Algebras Generated by the Bergman Projection and Operators of Multiplication by Piecewise Continuous Functions

被引:0
|
作者
Maribel Loaiza
机构
[1] Departamento de Matemáticas,
[2] CINVESTAV-IPN,undefined
[3] A.P. 14-740,undefined
[4] México,undefined
[5] D.F. 07000,undefined
[6] México. E-mail: mloaiza@math.cinvestav.mx,undefined
来源
关键词
Mathematics Subject Classification (2000). 47B34, 47L25, 44A15.¶Keywords. Bergman projection, local principle, integral transforms.;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be the unit disk. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{A}\subset L_{\infty}(D) $\end{document} containing piecewise continuous functions, we study the C*-algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{R_{A}} $\end{document} generated by the Bergman projection for D and operators of multiplication by functions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{A} $\end{document}. These algebras are related to the algebra generated by more than two projections depending on how many limits a function has at a boundary point. We find the description of the symbol algebra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{R_{A}} $\end{document}, denoted here by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{\widehat{R}_{A}} $\end{document}. Interesting facts about representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{\widehat{R}_{A}} $\end{document} are found and we construct a special family of coefficients such that the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{\widehat{R}_{A}} $\end{document} has irreducible representations of predefined dimensions.
引用
收藏
页码:215 / 234
页数:19
相关论文
共 50 条