Exact solution approach for a class of nonlinear bilevel knapsack problems

被引:0
|
作者
Behdad Beheshti
Osman Y. Özaltın
M. Hosein Zare
Oleg A. Prokopyev
机构
[1] University of Pittsburgh,Department of Industrial Engineering
[2] North Carolina State University,Edward P. Fitts Department of Industrial and Systems Engineering
来源
关键词
Bilevel programming; Integer programming; Value functions; Knapsack problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of nonlinear bilevel knapsack problems. The upper-level objective is a nonlinear integer function of both the leader’s and the follower’s decision variables. At the lower level the follower solves a linear binary knapsack problem, where the right-hand side of the knapsack constraint depends on the resource allocated by the leader. After discussing computational complexity issues, we propose an exact solution approach using an equivalent single-level value function reformulation. Extensive computational experiments are performed with quadratic and fractional binary objective functions.
引用
收藏
页码:291 / 310
页数:19
相关论文
共 50 条
  • [1] Exact solution approach for a class of nonlinear bilevel knapsack problems
    Beheshti, Behdad
    Ozaltin, Osman Y.
    Zare, M. Hosein
    Prokopyev, Oleg A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (02) : 291 - 310
  • [2] Exact solution of a class of nonlinear knapsack problems
    Elhedhli, S
    [J]. OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 615 - 624
  • [3] An Exact Algorithm for Bilevel 0-1 Knapsack Problems
    Mansi, Raid
    Alves, Claudio
    de Carvalho, J. M. Valerio
    Hanafi, Said
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [4] An exact approach for the bilevel knapsack problem with interdiction constraints and extensions
    Federico Della Croce
    Rosario Scatamacchia
    [J]. Mathematical Programming, 2020, 183 : 249 - 281
  • [5] An exact approach for the bilevel knapsack problem with interdiction constraints and extensions
    Della Croce, Federico
    Scatamacchia, Rosario
    [J]. MATHEMATICAL PROGRAMMING, 2020, 183 (1-2) : 249 - 281
  • [6] On exact solution approaches for bilevel quadratic 0–1 knapsack problem
    Gabriel Lopez Zenarosa
    Oleg A. Prokopyev
    Eduardo L. Pasiliao
    [J]. Annals of Operations Research, 2021, 298 : 555 - 572
  • [7] Exact solution to a special class of nonlinear MPC problems
    Darup, Moritz Schulze
    Klaedtke, Manuel
    Moennigmann, Martin
    [J]. IFAC PAPERSONLINE, 2021, 54 (06): : 290 - 295
  • [8] Exact solution approaches for bilevel assignment problems
    Beheshti, Behdad
    Prokopyev, Oleg A.
    Pasiliao, Eduardo L.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 64 (01) : 215 - 242
  • [9] Exact solution approaches for bilevel assignment problems
    Behdad Beheshti
    Oleg A. Prokopyev
    Eduardo L. Pasiliao
    [J]. Computational Optimization and Applications, 2016, 64 : 215 - 242
  • [10] Lower Bounds and a New Exact Approach for the Bilevel Knapsack with Interdiction Constraints
    Della Croce, Federico
    Scatamacchia, Rosario
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2019, 2019, 11480 : 155 - 167