On a singular Neumann problem for semilinear elliptic equations with critical Sobolev exponent and lower order terms

被引:0
|
作者
J. Chabrowski
机构
[1] University of Queensland,Department of Mathematics
关键词
35B33; 35J65; 35Q55; Critical Sobolev exponent; Hardy potential; indefinite weight functions; topological linking;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the solvability of the Neumann problem involving the critical Sobolev exponent, the Hardy potential and a nonlinear term of lower order. Lower order terms are allowed to interfere with the spectrum of the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$-\Delta-\mu/\mid x \mid^{2}$$ \end{document} subject to the Neumann boundary conditions. Solutions are obtained via a min-max procedure based on the variational mountain-pass principle and topological linking.
引用
收藏
页码:333 / 352
页数:19
相关论文
共 50 条