Runge-Kutta methods for quadratic ordinary differential equations

被引:0
|
作者
Arieh Iserles
Geetha Ramaswami
Mark Sofroniou
机构
[1] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
[2] Universidad de Valladolid,Departamento de Matemática Aplicada y Computación
[3] Wolfram Research Inc.,Department of Mathematics
[4] Indian Institute of Science,undefined
来源
BIT Numerical Mathematics | 1998年 / 38卷
关键词
65L06; Runge-Kutta methods; quadratic odes; binary trees;
D O I
暂无
中图分类号
学科分类号
摘要
Many systems of ordinary differential equations are quadratic: the derivative can be expressed as a quadratic function of the dependent variable. We demonstrate that this feature can be exploited in the numerical solution by Runge-Kutta methods, since the quadratic structure serves to decrease the number of order conditions. We discuss issues related to construction design and implementation and present a number of new methods of Runge-Kutta and Runge-Kutta-Nyström type that display superior behaviour when applied to quadratic ordinary differential equations.
引用
收藏
页码:315 / 346
页数:31
相关论文
共 50 条
  • [1] Runge-Kutta methods for quadratic ordinary differential equations
    Iserles, A
    Ramaswami, G
    Sofroniou, M
    [J]. BIT NUMERICAL MATHEMATICS, 1998, 38 (02) : 315 - 346
  • [2] Runge-Kutta Methods for Ordinary Differential Equations
    Butcher, J. C.
    [J]. NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 : 37 - 58
  • [3] Hybrid Runge-Kutta methods for ordinary differential equations
    Liu, Zhongli
    Hu, Jintao
    Tian, Hongjiong
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [4] Runge-Kutta methods for linear ordinary differential equations
    Zingg, DW
    Chisholm, TT
    [J]. APPLIED NUMERICAL MATHEMATICS, 1999, 31 (02) : 227 - 238
  • [5] Improved Runge-Kutta Methods for Solving Ordinary Differential Equations
    Rabiei, Faranak
    Ismail, Fudziah
    Suleiman, Mohamed
    [J]. SAINS MALAYSIANA, 2013, 42 (11): : 1679 - 1687
  • [6] Regularity properties of Runge-Kutta methods for ordinary differential equations
    Jackiewicz, Z
    Vermiglio, R
    Zennaro, M
    [J]. APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) : 251 - 262
  • [7] Partitioning ordinary differential equations using Runge-Kutta methods
    Suleiman, MB
    Ismail, FB
    Ariffin, K
    Atan, BM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1996, 79 (2-3) : 289 - 309
  • [8] Implicit Runge-Kutta methods for lipschitz continuous ordinary differential equations
    Chen, Xiaojun
    Mahmoud, Sayed
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1266 - 1280
  • [9] Construction of Runge-Kutta type methods for solving ordinary differential equations
    Tang, Wensheng
    Sun, Yajuan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 179 - 191
  • [10] ADDITIVE RUNGE-KUTTA METHODS FOR STIFF ORDINARY DIFFERENTIAL-EQUATIONS
    COOPER, GJ
    SAYFY, A
    [J]. MATHEMATICS OF COMPUTATION, 1983, 40 (161) : 207 - 218