Some inequalities for f-divergence measures generated by 2n-convex functions

被引:0
|
作者
Sever S. Dragomir
Stamatis Koumandos
机构
[1] Victoria University,School of Engineering & Science
[2] The University of Cyprus,Department of Mathematics and Statistics
来源
Acta Scientiarum Mathematicarum | 2010年 / 76卷 / 1-2期
关键词
-divergence measure; 2; -convexity; convex functions; absolutely monotonic and completely monotonic functions; analytic inequalities; 94Axx; 26D15; 26D10;
D O I
10.1007/BF03549821
中图分类号
学科分类号
摘要
A double Jensen type inequality for 2n-convex functions is obtained and applied to establish upper and lower bounds for the f-divergence measure in Information Theory. Some particular inequalities of interest are stated as well.
引用
收藏
页码:71 / 86
页数:15
相关论文
共 50 条
  • [1] Some inequalities for f-divergence measures generated by 2n-convex functions
    Dragomir, Sever S.
    Koumandos, Stamatis
    ACTA SCIENTIARUM MATHEMATICARUM, 2010, 76 (1-2): : 71 - 86
  • [2] INEQUALITIES FOR QUANTUM f-DIVERGENCE OF CONVEX FUNCTIONS AND MATRICES
    Dragomir, Silvestru Sever
    KOREAN JOURNAL OF MATHEMATICS, 2018, 26 (03): : 349 - 371
  • [3] Some Quantum f-divergence Inequalities for Convex Functions of Self-adjoint Operators
    Taghavi, A.
    Darvish, V
    Nazari, H. M.
    Dragomir, S. S.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (01): : 125 - 139
  • [4] f-Divergence Inequalities
    Sason, Igal
    Verdu, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 5973 - 6006
  • [5] On f-divergence for σ-⊕-measures
    Agahi, Hamzeh
    Yadollahzadeh, Milad
    SOFT COMPUTING, 2021, 25 (15) : 9781 - 9787
  • [6] f-Divergence functional of operator log-convex functions
    Kian, Mohsen
    Dragomir, S. S.
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (02): : 123 - 135
  • [7] Mixed f-divergence and inequalities for log-concave functions
    Caglar, Umut
    Werner, Elisabeth M.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 110 : 271 - 290
  • [8] Jensen-Ostrowski type inequalities and applications for f-divergence measures
    Cerone, Pietro
    Dragomir, Sever S.
    Kikianty, Eder
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 304 - 315
  • [9] f-Divergence Inequalities via Functional Domination
    Sason, Igal
    Verdu, Sergio
    2016 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING (ICSEE), 2016,
  • [10] On the f-divergence for non-additive measures
    Torra, Vicenc
    Narukawa, Yasuo
    Sugeno, Michio
    FUZZY SETS AND SYSTEMS, 2016, 292 : 364 - 379