Ray Chaos in the Long-Range Propagation of Sound in the Ocean

被引:0
|
作者
A. L. Virovlyansky
机构
[1] Institute of Applied Physics of the Russian Academy of Sciences,
关键词
Travel Time; Sound Speed; Wiener Process; Canonical Variable; Hamiltonian Formalism;
D O I
10.1023/B:RAQE.0000019866.57376.52
中图分类号
学科分类号
摘要
We develop an approximate analytical approach for a description of the stochastic behavior of sound rays in deep-sea acoustic waveguides with paths up to 3 to 5 thousands of kilometers. The ray dynamics is studied using the Hamiltonian formalism in terms of the action–angle canonical variables. A realistic model of underwater waveguide with internal-wave-induced perturbations of the sound speed field is applied. We point out a small parameter of the problem, which allows one to linearize the Hamilton (ray) equations and approximate the action variable by a Wiener process representing the simplest model of diffusion. The stochastic ray theory based on this approximation is applied to an analysis of ray travel times, i.e., the travel times of sound pulses coming to a receiver via different ray paths. The formation of compact clusters of the chaotic-ray travel times is explained quantitatively.
引用
收藏
页码:502 / 516
页数:14
相关论文
共 50 条
  • [1] Ray chaos of underwater sound in long-range propagation
    Yan, JG
    Yen, KK
    [J]. CHAOTIC, FRACTAL, AND NONLINEAR SIGNAL PROCESSING, 1996, (375): : 231 - 238
  • [2] The Ray-Wave correspondence and the suppression of chaos in long-range sound propagation in the ocean
    D. V. Makarov
    L. E. Kon’kov
    M. Yu. Uleysky
    [J]. Acoustical Physics, 2008, 54 : 382 - 391
  • [3] The ray-wave correspondence and the suppression of chaos in long-range sound propagation in the ocean
    Makarov, D. V.
    Kon'kov, L. E.
    Uleysky, M. Yu.
    [J]. ACOUSTICAL PHYSICS, 2008, 54 (03) : 382 - 391
  • [4] Ray dynamics in long-range deep ocean sound propagation
    Brown, MG
    Colosi, JA
    Tomsovic, S
    Virovlyansky, AL
    Wolfson, MA
    Zaslavsky, GM
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 113 (05): : 2533 - 2547
  • [5] LONG-RANGE SOUND PROPAGATION IN DEEP OCEAN
    HALE, FE
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1961, 33 (04): : 456 - &
  • [6] LONG-RANGE SOUND PROPAGATION IN THE DEEP OCEAN
    HALE, FE
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1959, 31 (11): : 1572 - 1572
  • [7] Chaos and Wavefront Reversal for Long-Range Sound Propagation
    Makarov, D. V.
    Komissarov, A. A.
    [J]. DOKLADY EARTH SCIENCES, 2022, 507 (02) : 1118 - 1123
  • [8] Chaos and Wavefront Reversal for Long-Range Sound Propagation
    D. V. Makarov
    A. A. Komissarov
    [J]. Doklady Earth Sciences, 2022, 507 : 1118 - 1123
  • [9] Wave chaos and mode-medium resonances at long-range sound propagation in the ocean
    Smirnov, IP
    Virovlyansky, AL
    Zaslavsky, GM
    [J]. CHAOS, 2004, 14 (02) : 317 - 332
  • [10] Stochastic ray theory for long-range sound propagation in deep ocean environments
    Brown, MG
    Viechnicki, J
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (04): : 2090 - 2104