Two-scale composite finite element method for Dirichlet problems on complicated domains

被引:0
|
作者
M. Rech
S. Sauter
A. Smolianski
机构
[1] Universität Zürich,Institut für Mathematik
来源
Numerische Mathematik | 2006年 / 102卷
关键词
35J20; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define a new class of finite elements for the discretization of problems with Dirichlet boundary conditions. In contrast to standard finite elements, the minimal dimension of the approximation space is independent of the domain geometry and this is especially advantageous for problems on domains with complicated micro-structures. For the proposed finite element method we prove the optimal-order approximation (up to logarithmic terms) and convergence estimates valid also in the cases when the exact solution has a reduced regularity due to re-entering corners of the domain boundary. Numerical experiments confirm the theoretical results and show the potential of our proposed method.
引用
收藏
页码:681 / 708
页数:27
相关论文
共 50 条