Non-minimizing connecting orbits for multi-well systems

被引:0
|
作者
Ramon Oliver-Bonafoux
机构
[1] Sorbonne Université,Laboratoire Jacques
关键词
35J50 Primary; 37K58; 58E10 Secondary;
D O I
暂无
中图分类号
学科分类号
摘要
Given a nonnegative, smooth potential V:Rk→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V: {{\mathbb {R}}}^k \rightarrow {{\mathbb {R}}}$$\end{document} (k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}) with multiple zeros, we say that a curve q:R→Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {q}}: {{\mathbb {R}}}\rightarrow {{\mathbb {R}}}^k$$\end{document} is a connecting orbit if it solves the autonomous system of ordinary differential equations q′′=∇uV(q),inR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathfrak {q}}''= \nabla _{\mathbf{u}} V({\mathfrak {q}}) , \quad \text{ in }\;\, {{\mathbb {R}}}\end{aligned}$$\end{document}and tends to a zero of V at ±∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm \infty $$\end{document}. Broadly, our goal is to study the existence of connecting orbits for the problem above using variational methods. Despite the rich previous literature concerning the existence of connecting orbits for other types of second order systems, to our knowledge only connecting orbits which minimize the associated energy functional in a suitable function space were proven to exist for autonomous multi-well potentials. The contribution of this paper is to provide, for a class of such potentials, some existence results regarding non-minimizing connecting orbits. Our results are closely related to the ones in the same spirit obtained by J. Bisgard in his PhD thesis (University of Wisconsin-Madison, 2005), where non-autonomous periodic multi-well potentials (ultimately excluding autonomous potentials) are considered. Our approach is based on several refined versions of the classical Mountain Pass Lemma.
引用
收藏
相关论文
共 50 条
  • [2] DISPLACEMENT MECHANISM IN MULTI-WELL SYSTEMS
    KERN, LR
    TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1952, 195 : 39 - 46
  • [3] Dynamic stability of non-minimizing phase mixtures
    Friesecke, G
    McLeod, JB
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1966): : 2427 - 2436
  • [4] A simple model for resonant tunnelling in multi-well systems
    van der Kerk, SM
    Budzelaar, PHM
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1997, 100 (1-2): : 67 - 78
  • [5] On the heteroclinic connection problem for multi-well gradient systems
    Zuniga, Andres
    Sternberg, Peter
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 3987 - 4007
  • [6] Connecting orbits in perturbed systems
    Fritz Colonius
    Thorsten Hüls
    Martin Rasmussen
    Nonlinear Dynamics, 2010, 59 : 569 - 578
  • [7] Connecting orbits in perturbed systems
    Colonius, Fritz
    Huels, Thorsten
    Rasmussen, Martin
    NONLINEAR DYNAMICS, 2010, 59 (04) : 569 - 578
  • [8] Connecting orbits of Hamiltonian systems
    Bolotin, SV
    NONLINEAR FUNCTIONAL ANALYSIS AND APPLICATIONS TO DIFFERENTIAL EQUATIONS, PROCEEDINGS OF THE SECOND SCHOOL, 1998, : 36 - 59
  • [9] Ideal systems and connecting orbits
    Yu S.-X.
    Zheng Z.-H.
    Hu F.-N.
    Acta Mathematicae Applicatae Sinica, 2004, 20 (4) : 617 - 622
  • [10] Enhanced ionization of multi-well quantum systems in intense laser fields
    胡素兴
    屈卫星
    徐至展
    Science China Mathematics, 1998, (02) : 198 - 202