Uncertainty Principle for the Short-time Special Affine Fourier Transform

被引:0
|
作者
Rui Li
Qingyue Zhang
机构
[1] Tianjin University of Technology,College of Science
关键词
Uncertainty principle; Special affine Fourier transform; Offset linear canonical transform; Short-time special affine Fourier transform;
D O I
暂无
中图分类号
学科分类号
摘要
The special affine Fourier transform (SAFT) generalizes a number of well known unitary transformations, signal processing transformations and optics related mathematical operations. For example, Fourier transform, fractional Fourier transform, linear canonical transform, etc. The short-time special affine Fourier transform (STSAFT) is a novel time-frequency analysis tool, which solve the limitation of SAFT in time-frequency signal description. In this paper, we generalize some different uncertainty principles (UPs) for the SAFT and STSAFT of complex signals. The UPs for the STSAFT of complex signals are obtained in both local and global cases. Then the uncertainty principle for two STSAFT time-frequency domains is discussed. Finally, we provide a class of signals to illustrate our results.
引用
收藏
页码:4594 / 4613
页数:19
相关论文
共 50 条
  • [1] Uncertainty Principle for the Short-time Special Affine Fourier Transform
    Li, Rui
    Zhang, Qingyue
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (09) : 4594 - 4613
  • [2] A fractal uncertainty principle for the short-time Fourier transform and Gabor multipliers
    Knutsen, Helge
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 62 : 365 - 389
  • [3] Short-time special affine Fourier transform for quaternion-valued functions
    Srivastava, H. M.
    Shah, Firdous A.
    Teali, Aajaz A.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
  • [4] Short-time special affine Fourier transform for quaternion-valued functions
    H. M. Srivastava
    Firdous A. Shah
    Aajaz A. Teali
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [5] A Note on the HRT Conjecture and a New Uncertainty Principle for the Short-Time Fourier Transform
    Nicola, Fabio
    Trapasso, S. Ivan
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [6] A Note on the HRT Conjecture and a New Uncertainty Principle for the Short-Time Fourier Transform
    Fabio Nicola
    S. Ivan Trapasso
    [J]. Journal of Fourier Analysis and Applications, 2020, 26
  • [7] Uncertainty Principle of the Special Affine Fourier Transform for Discrete Signals
    Han, Mo
    Shi, Jun
    Sha, Xuejun
    Jia, Min
    Li, Qingzhong
    Zhang, Naitong
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 1351 - 1358
  • [8] The uncertainty principle for the short-time Fourier transform on finite cyclic groups: Cases of equality
    Nicola, Fabio
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (12)
  • [9] Uncertainty principles for the short-time Fourier transform on the lattice
    Poria, Anirudha
    Dasgupta, Aparajita
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1501 - 1518
  • [10] Uncertainty principles associated with the directional short-time Fourier transform
    Mejjaoli, Hatem
    Shah, Firdous A.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (06)