Strategy for solving semi-analytically three-dimensional transient flow in a coupled N-layer aquifer system

被引:0
|
作者
E. J. M. Veling
C. Maas
机构
[1] Delft University of Technology,Water Resources Section, Faculty of Civil Engineering and Geosciences
[2] KWR,undefined
来源
Journal of Engineering Mathematics | 2009年 / 64卷
关键词
Analytical solution; Coupled aquifers; Integral transformation; Transient flow;
D O I
暂无
中图分类号
学科分类号
摘要
Efficient strategies for solving semi-analytically the transient groundwater head in a coupled N-layer aquifer system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi _{i}(r,z,t)}$$\end{document} , i = 1, ... , N, with radial symmetry, with full z-dependency, and partially penetrating wells are presented. Aquitards are treated as aquifers with their own horizontal and vertical permeabilities. Since the vertical direction is fully taken into account, there is no need to pose the Dupuit assumption, i.e., that the flow is mainly horizontal. To solve this problem, integral transforms will be employed: the Laplace transform for the t-variable (with transform parameter p), the Hankel transform for the r-variable (with transform parameter α) and a particular form of a generalized Fourier transform for the vertical direction z with an infinite set of eigenvalues \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda _{m}^{2}}$$\end{document} (with the discrete index m). It is possible to solve this problem in the form of a semi-analytical solution in the sense that an analytical expression in terms of the variables r and z, transform parameter p, and eigenvalues \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda _{m}^{2}(p)}$$\end{document} of the generalized Fourier transform can be given or in terms of the variables z and t, transform parameter α, and eigenvalues \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda _{m}^{2}(\alpha )}$$\end{document} . The calculation of the eigenvalues \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda _{m}^{2}}$$\end{document} and the inversion of these transformed solutions can only be done numerically. In this context the application of the generalized Fourier transform is novel. By means of this generalized Fourier transform, transient problems with horizontal symmetries other than radial can be treated as well. The notion of analytical solution versus numerical solution is discussed and a classification of analytical solutions is proposed in seven classes. The expressions found in this paper belong to Class 6, meaning that the transformed solutions are written in terms of eigenvalues which depend on one transform parameter (here p or α). Earlier solutions to the transient problem belong to Class 7, where the eigenvalues depend on two transform parameters. The theory is applied to three examples.
引用
收藏
页码:145 / 161
页数:16
相关论文
共 43 条
  • [1] Strategy for solving semi-analytically three-dimensional transient flow in a coupled N-layer aquifer system
    Veling, E. J. M.
    Maas, C.
    JOURNAL OF ENGINEERING MATHEMATICS, 2009, 64 (02) : 145 - 161
  • [2] Analytically-integrated radial integration BEM for solving three-dimensional transient heat conduction problems
    Feng, Wei-Zhe
    Yang, Kai
    Cui, Miao
    Gao, Xiao-Wei
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 79 : 21 - 30
  • [3] Semi-analytical solutions for transient flow to a partially penetrated well with variable discharge in a general three-layer aquifer system
    Feng, Qinggao
    Liu, Zhenwu
    Zhan, Hongbin
    JOURNAL OF HYDROLOGY, 2021, 598 (598)
  • [4] Three-dimensional transient analysis of coupled RCS-containment integral system
    Ge, Li
    Yang, Zijiang
    Shan, Jianqiang
    Li, Huaqi
    Liu, Dong
    NUCLEAR ENGINEERING AND DESIGN, 2020, 359
  • [5] Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
    Berg, Steven J.
    Illman, Walter A.
    WATER RESOURCES RESEARCH, 2011, 47
  • [6] Three-dimensional response to a partially penetration well pumping in a general anisotropic three-layer aquifer system
    Feng, Qinggao
    Luo, Yu
    Zhan, Hongbin
    JOURNAL OF HYDROLOGY, 2020, 585
  • [7] Method for solving the equations describing the interaction of a three-dimensional boundary layer with an outer inviscid flow
    Korolev G.L.
    Computational Mathematics and Mathematical Physics, 2007, 47 (3) : 487 - 509
  • [8] A three-dimensional transient numerical study of a close-coupled catalytic converter internal flow
    Ramadan, Bassern H.
    Richmond, Russel L.
    FEDSM 2007: PROCEEDINGS OF THE 5TH JOINT ASME/JSME FLUIDS ENGINEERING SUMMER CONFERENCE, VOL 2, PTS A AND B, 2007, : 1205 - 1211
  • [9] Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system
    Kihm, Jung-Hwi
    Kim, Jun-Mo
    Song, Sung-Ho
    Lee, Gyu-Sang
    JOURNAL OF HYDROLOGY, 2007, 335 (1-2) : 1 - 14
  • [10] THREE-DIMENSIONAL TRANSIENT MODELING OF THE MELT FLOW IN A TMF VCZ SYSTEM FOR GaAs CRYSTAL GROWTH
    Nacke, B.
    Kasjanow, H.
    Krause, A.
    Muiznieks, A.
    Kiessling, F. -M.
    Rehse, U.
    Rudolph, P.
    MAGNETOHYDRODYNAMICS, 2009, 45 (03): : 317 - 324