Empirically testing vaterite structural models using neutron diffraction and thermal analysis

被引:0
|
作者
Bryan C. Chakoumakos
Brenda M. Pracheil
Ryan P. Koenigs
Ronald M. Bruch
Mikhail Feygenson
机构
[1] Oak Ridge National Laboratory,Quantum Condensed Matter Division
[2] Oak Ridge National Laboratory,Environmental Sciences Division
[3] Wisconsin Department of Natural Resources,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Otoliths, calcium carbonate (CaCO3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite—a metastable polymorph of CaCO3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of Lake Sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while Lake Sturgeon otoliths are primarily composed of vaterite, they also contain the denser CaCO3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6522 model, a = 7.1443(4)Å, c = 25.350(4)Å, V = 1121.5(2)Å3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.
引用
收藏
相关论文
共 50 条
  • [1] Empirically testing vaterite structural models using neutron diffraction and thermal analysis
    Chakoumakos, Bryan C.
    Pracheil, Brenda M.
    Koenigs, Ryan P.
    Bruch, Ronald M.
    Feygenson, Mikhail
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Neutron diffraction and structural models of RbC60 phases
    Fox, JR
    Lopinski, GP
    Lannin, JS
    Adams, GB
    Page, JB
    Fischer, JE
    CHEMICAL PHYSICS LETTERS, 1996, 249 (3-4) : 195 - 200
  • [4] NEUTRON DIFFRACTION POTENTIALITIES FOR NON-DESTRUCTIVE TESTING OF STRUCTURAL MATERIALS
    Sumin, V. V.
    Bokuchava, G. D.
    Papushkin, I. V.
    Balagurov, A. M.
    Venter, A. M.
    10TH EUROPEAN CONFERENCE ON NON-DESTRUCTIVE TESTING 2010 (ECNDT), VOLS 1-5, 2010, : 1233 - 1242
  • [5] Structural integrity assessment of welds using neutron diffraction method
    Woo, Wanchuck
    FROM FAILURE TO BETTER DESIGN, MANFACTURE AND CONSTRUCTION, 2012, : 47 - 53
  • [6] STRUCTURAL-ANALYSIS OF ORTHORHOMBIC HAFNIA BY NEUTRON POWDER DIFFRACTION
    OHTAKA, O
    YAMANAKA, T
    KUME, S
    HARA, N
    ASANO, H
    IZUMI, F
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (01) : 233 - 237
  • [7] Structural Engineering Studies on Reinforced Concrete Structure using Neutron Diffraction
    Suzuki, Hiroshi
    Kusunoki, Koichi
    Kanematsu, Manabu
    Mukai, Tomohisa
    Harjo, Stefanus
    RESIDUAL STRESSES 2016: ICRS-10, 2017, 2 : 25 - 30
  • [8] Neutron diffraction analysis of structural transformations in lithium-ion batteries
    I. A. Bobrikov
    N. Yu. Samoylova
    D. A. Balagurov
    O. Yu. Ivanshina
    O. A. Drozhzhin
    A. M. Balagurov
    Russian Journal of Electrochemistry, 2017, 53 : 178 - 186
  • [9] Neutron diffraction analysis of structural transformations in lithium-ion batteries
    Bobrikov, I. A.
    Samoylova, N. Yu.
    Balagurov, D. A.
    Ivanshina, O. Yu.
    Drozhzhin, O. A.
    Balagurov, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2017, 53 (02) : 178 - 186
  • [10] Thermal Neutron Laue Diffraction Using the Diffractometer LADI at the ILL.
    Cowan, J. A.
    McIntyre, G. J.
    Wilkinson, C.
    Myles, D. D. A.
    Howard, J. A. K.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2000, 56 : S63 - S63