Two-dimensional electroelastic fundamental solutions for general anisotropic piezoelectric media

被引:2
|
作者
Jinxi L. [1 ]
Biao W. [2 ]
Shanyi D. [2 ]
机构
[1] Department of Civil Engineering, Shijiazhuang Railway Institute
[2] Harbin Institute of Technology
基金
中国国家自然科学基金;
关键词
Electroelastic field; Fundamental solution; Piezoelectric medium; Plane wave decomposition method;
D O I
10.1007/BF00189285
中图分类号
学科分类号
摘要
Explicit fomulas for 2-D electroelaslic fundamental solutions in general anisotropic piezoelectric media subjected to a line force and a line charge are obtained by using the plane wave decomposition method and a subsequent application of the residue calculus. "Anisotropie" means that any material symmetry restrictions are not assumed. "Two dimensional" includes not only in-plane problems but also anti-plane problems and problems in which in-plane and anti-plane deformations couple each other. As a special case, the solutions for transversely Isotropie piezoelectric media are given.
引用
收藏
页码:949 / 956
页数:7
相关论文
共 50 条
  • [1] Two-dimensional electroelastic fundamental solutions for general anisotropic piezoelectric media
    Liu, JX
    Wang, B
    Du, SY
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1997, 18 (10) : 949 - 956
  • [2] TWO-DIMENSIONAL ELECTROELASTIC FUNDAMENTAL SOLUTIONS FOR GENERAL ANISOTROPIC PIEZOELECTRIC MEDIA
    刘金喜
    王彪
    杜善义
    [J]. Applied Mathematics and Mechanics(English Edition), 1997, (10) : 949 - 956
  • [3] The method of fundamental solutions for electroelastic analysis of two-dimensional piezoelectric materials
    Wang, Juan
    Wang, Xiao
    Qu, Wenzhen
    [J]. INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2022, 23 (05): : 420 - 428
  • [4] Electroelastic Analysis of Two-Dimensional Piezoelectric Structures by the Localized Method of Fundamental Solutions
    Gu, Yan
    Lin, Ji
    Fan, Chia -Ming
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (04) : 880 - 900
  • [5] A two-dimensional electroelastic problem of a piezoelectric body with two inhomogeneities
    Ishihara, M
    Noda, N
    [J]. MECHANICS OF ELECTROMAGNETIC MATERIALS AND STRUCTURES, 2000, 19 : 110 - 123
  • [6] Two-dimensional electroelastic problem for a multiply connected piezoelectric body
    Kaloerov, SA
    Baeva, AI
    Glushchenko, YA
    [J]. INTERNATIONAL APPLIED MECHANICS, 2003, 39 (01) : 77 - 84
  • [7] Two-Dimensional Electroelastic Problem for a Multiply Connected Piezoelectric Body
    S. A. Kaloerov
    A. I. Baeva
    Yu. A. Glushchenko
    [J]. International Applied Mechanics, 2003, 39 : 77 - 84
  • [8] Localized method of fundamental solutions for two-dimensional anisotropic elasticity problems
    Liu, Q. G.
    Fan, C. M.
    Sarler, B.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 125 : 59 - 65
  • [9] Fundamental solutions for two-dimensional anisotropic thermo-magneto-electro-elasticity
    Hwu, Chyanbin
    Hsu, Chung-Lei
    Hsu, Chia-Wei
    Shiah, Y. C.
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (11) : 3575 - 3596
  • [10] TWO-DIMENSIONAL DYNAMIC PROCESSES IN ANISOTROPIC MEDIA
    GOLUBEVA, OV
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1980, 44 (01): : 115 - 118