Smith theory and geometric Hecke algebras

被引:0
|
作者
David Treumann
机构
[1] Boston College,
来源
Mathematische Annalen | 2019年 / 375卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In 1960 Borel proved a “localization” result relating the rational cohomology of a topological space X to the rational cohomology of the fixed points for a torus action on X. This result and its generalizations have many applications in Lie theory. In 1934, Smith proved a similar localization result relating the mod p cohomology of X to the mod p cohomology of the fixed points for a Z/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}/p$$\end{document}-action on X. In this paper we study Z/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}/p$$\end{document}-localization for constructible sheaves and functions. We show that Z/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}/p$$\end{document}-localization on loop groups is related via the geometric Satake correspondence to some special homomorphisms that exist between algebraic groups defined over a field of small characteristic.
引用
收藏
页码:595 / 628
页数:33
相关论文
共 50 条