Let F be a field of characteristic ≠ 2 such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} is of cohomological 2- and 3-dimension ≤ 2. For G a simply connected group of type 3D4 or 6D4 over F, we show that the natural map \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}where ΩF is the set of orderings of F and Fv denotes the completion of F at v, restricts to be injective on the image of H1(F, Z(G)) in H1(F, G).