Trialitarian groups and the Hasse principle

被引:0
|
作者
R. S. Garibaldi
机构
[1] Department of Mathematics,
[2] ETH,undefined
[3] CH-8092 Zürich,undefined
[4] Switzerland.¶e-mail: skip@member.ams.org,undefined
来源
manuscripta mathematica | 1999年 / 98卷
关键词
Mathematics Subject Classification (1991):Primary 11E72; Secondary 20G10, 20G15, 14M20, 17B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a field of characteristic ≠ 2 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is of cohomological 2- and 3-dimension ≤ 2. For G a simply connected group of type 3D4 or 6D4 over F, we show that the natural map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}where ΩF is the set of orderings of F and Fv denotes the completion of F at v, restricts to be injective on the image of H1(F, Z(G)) in H1(F, G).
引用
收藏
页码:97 / 113
页数:16
相关论文
共 50 条