Nanostructuring of biomaterials - A pathway to bone grafting substitute

被引:0
|
作者
Gerber T. [1 ,6 ]
Holzhüter G. [1 ]
Götz W. [2 ]
Bienengräber V. [3 ]
Henkel K.-O. [4 ]
Rumpel E. [5 ]
机构
[1] Institut für Physik, Universität Rostock, Rostock
[2] Poliklinik für Kieferorthopädie, Universität Bonn, Bonn
[3] Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie, Funktionsbereich Experimentelle Forschung, Universität Rostock, Rostock
[4] Bundeswehrkrankenhaus Hamburg, Abteilung VIIb, Hamburg
[5] Institut für Anatomie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald
[6] Institut für Physik, Universität Rostock
来源
European Journal of Trauma | 2006年 / 32卷 / 2期
关键词
Bone graft substitute; Growth factors; Immunohistochemistry; NanoBone®; Remodeling;
D O I
10.1007/s00068-006-6046-9
中图分类号
学科分类号
摘要
Background: The bone substitute NanoBone® consists of nanocrystalline hydroxyapatite embedded in a highly porous matrix of silica gel. It promotes the healing of bone defects and is degraded by osteoclasts during bone remodeling.The present study investigates the interactions of NanoBone® with bone tissue. Methods: Granules of NanoBone® were implanted in defects of critical size in the mandible of minipigs. Samples were taken after 5 and 10 weeks and demineralized. The composition of the implanted granules was analyzed by means of transmission and scanning electron microscopy and EDX. Enzyme-and immunohistochemistry was used to investigate organic components of NanoBone® granules that arised after implantation in the host. Results: EDX demonstrated that 5 weeks after implantation the silica gel was degraded and replaced by an organic matrix. Ultrastructurally, the matrix appeared amorphous with only single collagen fibrillae. PAS-staining indicated the presence of carbohydrates, Immunohistochemically, the bone proteins osteopontin, osteocalcin and BMP-2 were found as constituents of the new matrix. Alkalic phosphatase activity was located in osteoblasts and newly formed bone on NanoBone® and focally in particles. Osteoclasts with ruffled borders, sealing zones, and acid phosphatase activity were situated in resorption lacunae at granule surfaces not covered by new bone. Conclusions: In vivo, the silica gel of NanoBone® is replaced by bone matrix glycoproteins with known functions in attraction, adhesion, and differentation of bone cells as osteoblasts and osteoclasts. We assume that the deposition of these molecules supports the early phase of NanoBone® degradation by osteoclasts and promotes the production of new bone tissue. © Urban & Vogel.
引用
收藏
页码:132 / 140
页数:8
相关论文
共 50 条
  • [1] Osteoclastic resorption of bone substitute biomaterials
    Gruenherz, L.
    Wu, L.
    Wojtas, N.
    Kleinmichel, F.
    Guenter, C. I.
    Machens, H-G
    Schilling, A. F.
    OSTEOLOGIE, 2013, 22 (03) : 200 - 205
  • [2] Biomaterials as bone substitute: Classification and contribution
    Chai, F.
    Raoul, G.
    Wiss, A.
    Ferri, J.
    Hildebrand, H. F.
    REVUE DE STOMATOLOGIE DE CHIRURGIE MAXILLO-FACIALE ET DE CHIRURGIE ORALE, 2011, 112 (04) : 212 - 221
  • [3] Resorbability of bone substitute biomaterials by human osteoclasts
    Schilling, AF
    Linhart, W
    Filke, S
    Gebauer, M
    Schinke, T
    Rueger, JM
    Amling, M
    BIOMATERIALS, 2004, 25 (18) : 3963 - 3972
  • [4] Regeneration of Human Bone Using Different Bone Substitute Biomaterials
    Traini, Tonino
    Piattelli, Adriano
    Caputi, Sergio
    Degidi, Marco
    Mangano, Carlo
    Scarano, Antonio
    Perrotti, Vittoria
    Iezzi, Giovanna
    CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, 2015, 17 (01) : 150 - 162
  • [5] Human osteoclast formation and activity on bone substitute biomaterials
    Perrotti, V.
    Nicholls, B. M.
    Horton, M. A.
    Piattelli, A.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2007, 22 (07) : 1127 - 1128
  • [6] Bone defect animal models for testing efficacy of bone substitute biomaterials
    Li, Ye
    Chen, Shu-Kui
    Li, Long
    Qin, Ling
    Wang, Xin-Luan
    Lai, Yu-Xiao
    JOURNAL OF ORTHOPAEDIC TRANSLATION, 2015, 3 (03) : 95 - 104
  • [7] Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering
    Brydone, A. S.
    Meek, D.
    Maclaine, S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2010, 224 (H12) : 1329 - 1343
  • [8] THE INTERFACE BETWEEN OSTEOBLASTS AND BONE SUBSTITUTE BIOMATERIALS IN-VITRO
    RIEGLERTHORNTON, B
    ULM, C
    SCHOBEL, G
    MATEJKA, M
    MAILATH, G
    FASEB JOURNAL, 1994, 8 (04): : A303 - A303
  • [9] Bioactive polymers: A comprehensive review on bone grafting biomaterials
    Pourhajrezaei, Sana
    Abbas, Zahid
    Khalili, Mohammad Amin
    Madineh, Hossein
    Jooya, Hossein
    Babaeizad, Ali
    Gross, Jeffrey D.
    Samadi, Ali
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 278
  • [10] Maxillary sinus bone grafting with an injectable bone substitute: a sheep study
    Saffarzadeh, A
    Gauthier, O
    Humbert, T
    Weiss, P
    Bouler, JM
    Daculsi, G
    BIOCERAMICS, VOL 16, 2004, 254-2 : 193 - 196