Analysis of shear rheometry of yield stress materials and apparent yield stress materials

被引:0
|
作者
Peter O. Brunn
Hesham Asoud
机构
[1] Universität Erlangen-Nürnberg,
[2] Lehrstuhl für Strömungsmechanik,undefined
[3] Cauerstraße 4,undefined
[4] 91058 Erlangen,undefined
[5] Germany,undefined
来源
Rheologica Acta | 2002年 / 41卷
关键词
Plastic fluids Flow curve Apparent flow curve Viscometry;
D O I
暂无
中图分类号
学科分类号
摘要
For the most common types of viscometers the apparent flow curve of plastic fluids is studied. For torsional flow, where the shear rate is the natural variable, the apparent yield stress exceeds the true yield stress \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _c $$\end{document} by more than 33%. If, on the other hand, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the natural variable (like in capillary flow, slit flow, and concentric cylinder flow) the yield stress is correctly predicted, but the behavior close to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _c $$\end{document} differs fundamentally. If the apparent shear rate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot \gamma _a $$\end{document} goes to zero like \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\tau - \tau _c } \right)^{1/n} $$\end{document} (where the power law index n could be the power law index of a Herschel-Bulkley fluid), the true shear rate has to be proportional to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {\tau - \tau _c } \right)^{\left[ {1/n} \right] - 1} $$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \to \tau _c $$\end{document} . For n=1 this implies a discontinuity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot \gamma $$\end{document} at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _c $$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot \gamma = 0$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau < \tau _c $$\end{document} ). For tangential annular flow between concentric cylinders the ratio of radii \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \kappa \right) $$\end{document} enters. Using an exact relation between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot \gamma $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot \gamma _a $$\end{document} reveals that no single (κ-dependent) expression for the apparent flow curve can exist, which would for plastic fluids cover the entire flow regime (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau > \tau _c $$\end{document} ). Irrespective as to what viscometer is used the far field behavior of the apparent flow curve and the true flow curve will, in general, differ too, though only quantitatively.
引用
收藏
页码:524 / 531
页数:7
相关论文
共 50 条
  • [1] Analysis of shear rheometry of yield stress materials and apparent yield stress materials
    Brunn, PO
    Asoud, H
    [J]. RHEOLOGICA ACTA, 2002, 41 (06) : 524 - 531
  • [2] SHEAR RHEOMETRY OF FLUIDS WITH A YIELD STRESS
    MAGNIN, A
    PIAU, JM
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1987, 23 : 91 - 106
  • [3] Shear banding and yield stress in soft glassy materials
    Moller, P. C. F.
    Rodts, S.
    Michels, M. A. J.
    Bonn, Daniel
    [J]. PHYSICAL REVIEW E, 2008, 77 (04):
  • [4] On the yield stress of complex materials
    Calderas, F.
    Herrera-Valencia, E. E.
    Sanchez-Solis, A.
    Manero, O.
    Medina-Torres, L.
    Renteria, A.
    Sanchez-Olivares, G.
    [J]. KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2013, 25 (04) : 233 - 242
  • [5] On the yield stress of complex materials
    F. Calderas
    E. E. Herrera-Valencia
    A. Sanchez-Solis
    O. Manero
    L. Medina-Torres
    A. Renteria
    G. Sanchez-Olivares
    [J]. Korea-Australia Rheology Journal, 2013, 25 : 233 - 242
  • [6] A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
    de Souza Mendes, Paulo R.
    Thompson, Roney L.
    [J]. RHEOLOGICA ACTA, 2013, 52 (07) : 673 - 694
  • [7] A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
    Paulo R. de Souza Mendes
    Roney L. Thompson
    [J]. Rheologica Acta, 2013, 52 : 673 - 694
  • [8] Yield stress of fine grained materials
    Masumura, RA
    Hazzledine, PM
    Pande, CS
    [J]. ACTA MATERIALIA, 1998, 46 (13) : 4527 - 4534
  • [9] MOLD FLOW OF MATERIALS WITH A YIELD STRESS
    LIPSCOMB, GG
    DENN, MM
    [J]. JOURNAL OF RHEOLOGY, 1982, 26 (06) : 587 - 588
  • [10] Topological mixing of yield stress materials
    Lester, D. R.
    Chryss, A.
    [J]. PHYSICAL REVIEW FLUIDS, 2019, 4 (06):