A Combinatorial Interpretation of the Scalar Products of State Vectors of Integrable Models

被引:0
|
作者
Bogoliubov N.M. [1 ]
Malyshev C. [1 ]
机构
[1] St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg
基金
俄罗斯基础研究基金会;
关键词
Young Diagram; Young Tableau; Lattice Path; Plane Partition; Combinatorial Interpretation;
D O I
10.1007/s10958-014-1956-2
中图分类号
学科分类号
摘要
The representation of Bethe wave functions of certain integrable models via Schur functions allows one to apply the well-developed theory of symmetric functions to the calculation of thermal correlation functions. The algebraic relations arising in the calculation of scalar products and correlation functions are based on the Binet-Cauchy formula for the Schur functions. We provide a combinatorial interpretation of the formula for the scalar products of Bethe state vectors in terms of nests of self-avoiding lattice paths constituting so-called watermelon configurations. The proposed interpretation is, in turn, related to the enumeration of boxed plane partitions. Bibliography: 23 titles. © 2014 Springer Science+Business Media New York.
引用
收藏
页码:662 / 670
页数:8
相关论文
共 50 条
  • [1] Scalar products and norm of Bethe vectors for integrable models based on Uq ((gl)over-capm)
    Hutsalyuk, Arthur
    Liashyk, Andrii
    Pakuliak, Stanislav Z.
    Ragoucy, Eric
    Slavnov, Nikita A.
    SCIPOST PHYSICS, 2018, 4 (01):
  • [2] Scalar products of state vectors in totally asymmetric exactly solvable models on a ring
    Bogoliubov N.M.
    Journal of Mathematical Sciences, 2013, 192 (1) : 1 - 13
  • [3] Highest coefficient of scalar products in SU(3)-invariant integrable models
    Belliard, S.
    Pakuliak, S.
    Ragoucy, E.
    Slavnov, N. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [4] Scalar products of Bethe vectors in the models with gl(m|n) symmetry
    Hutsalyuk, A.
    Liashyk, A.
    Pakuliak, S. Z.
    Ragoucy, E.
    Slavnov, N. A.
    NUCLEAR PHYSICS B, 2017, 923 : 277 - 311
  • [5] The algebraic Bethe ansatz for scalar products in SU (3)-invariant integrable models
    Belliard, S.
    Pakuliak, S.
    Ragoucy, E.
    Slavnov, N. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [6] Bethe Vectors for Orthogonal Integrable Models
    A. N. Liashyk
    S. Z. Pakuliak
    E. Ragoucy
    N. A. Slavnov
    Theoretical and Mathematical Physics, 2019, 201 : 1545 - 1564
  • [7] BETHE VECTORS FOR ORTHOGONAL INTEGRABLE MODELS
    Liashyk, A. N.
    Pakuliak, S. Z.
    Ragoucy, E.
    Slavnov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 201 (02) : 1545 - 1564
  • [8] Integrable cosmological models with an additional scalar field
    Vsevolod R. Ivanov
    Sergey Yu. Vernov
    The European Physical Journal C, 2021, 81
  • [9] Integrable cosmological models with an additional scalar field
    Ivanov, Vsevolod R.
    Vernov, Sergey Yu.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (11):
  • [10] Classically Integrable Cosmological Models with a Scalar Field
    Suzuki, H.
    Takasugi, E.
    Takayama, Y.
    Modern Physics Letter A, 11 (16):