Model problem for the motion of a compressible, viscous flow with the no-slip boundary condition

被引:0
|
作者
Mikhail Perepelitsa
机构
[1] University of Houston,
关键词
Primary 99Z99; Secondary 00A00;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Navier–Stokes equations for the motion of a compressible, viscous, pressureless fluid in the domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega = \mathbb{R}^3_+}$$\end{document} with the no-slip boundary conditions. We construct a global in time, regular weak solution, provided that initial density ρ0 is bounded and the magnitude of the initial velocity u0 is suitably restricted in the norm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\sqrt{\rho_0(\cdot)}{\bf u}_0(\cdot)\|_{L^2(\Omega)} + \|\nabla{\bf u}_0(\cdot)\|_{L^2(\Omega)}}$$\end{document}.
引用
收藏
页码:267 / 276
页数:9
相关论文
共 50 条