Mixed-mode crack-tip stress fields for orthotropic functionally graded materials

被引:0
|
作者
Vijaya Bhaskar Chalivendra
机构
[1] University of Massachusetts Dartmouth,Department of Mechanical Engineering
来源
Acta Mechanica | 2009年 / 204卷
关键词
Stress Intensity Factor; Stiffness Ratio; Effective Stiffness; Electron Beam Physical Vapor Deposition; Shear Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
Quasi-static mixed mode stress fields for a crack in orthotropic inhomogeneous medium are developed using asymptotic analysis coupled with Westergaard stress function approach. In the problem formulation, the elastic constants E11, E22, G12, ν12 are replaced by an effective stiffness \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E=\sqrt {E_{11} E_{22}}}$$\end{document}, a stiffness ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta =\left({{E_{11}}\mathord{\left/ {\vphantom {{E_{11}} {E_{22}}}}\right. \kern-\nulldelimiterspace} {E_{22}}} \right)}$$\end{document}, an effective Poisson’s ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\nu =\sqrt {\nu_{12}\nu _{21}} }$$\end{document} and a shear parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k=\left({E \mathord{\left/ {\vphantom {E {2G_{12}}}}\right. \kern-\nulldelimiterspace} {2G_{12}}}\right)-\nu }$$\end{document}. An assumption is made to vary the effective stiffness exponentially along one of the principal axes of orthotropy. The mode-mixity due to the crack orientation with respect to the property gradient is accommodated in the analysis through superposition of opening and shear modes. The expansion of stress fields consisting of the first four terms are derived to explicitly bring out the influence of nonhomogeneity on the structure of the mixed-mode stress field equations. Using the derived mixed-mode stress field equations, the isochromatic fringe contours are developed to understand the variation of stress field around the crack tip as a function of both orthotropic stiffness ratio and non-homogeneous coefficient.
引用
收藏
页码:51 / 60
页数:9
相关论文
共 50 条
  • [1] Mixed-mode crack-tip stress fields for orthotropic functionally graded materials
    Chalivendra, Vijaya Bhaskar
    [J]. ACTA MECHANICA, 2009, 204 (1-2) : 51 - 60
  • [2] Mixed-Mode Crack-Tip Fields in an Anisotropic Functionally Graded Material
    Zhang, Linhui
    Kim, Jeong-Ho
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (05):
  • [3] Crack-tip stress fields in functionally graded materials with linearly varying properties
    Jain, N
    Rousseau, CE
    Shukla, A
    [J]. THEORETICAL AND APPLIED FRACTURE MECHANICS, 2004, 42 (02) : 155 - 170
  • [4] MIXED-MODE CRACK-TIP FIELDS IN MONOLITHIC CERAMICS
    ORTIZ, M
    GIANNAKOPOULOS, AE
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1990, 26 (07) : 705 - 723
  • [5] Higher Order Crack-tip Fields for Mode III Crack in Power Functionally Graded Piezoelectric Materials
    Chong, Xiao
    Pan, Jing-wen
    Dai, Yao
    [J]. ADVANCED MATERIAL ENGINEERING (AME 2015), 2016, : 693 - 698
  • [6] Mixed-mode crack propagation in functionally graded materials
    Kim, JH
    Paulino, GH
    [J]. FUNCTIONALLY GRADED MATERIALS VIII, 2005, 492-493 : 409 - 413
  • [7] Crack-tip stress fields for an arbitrarily oriented crack in a functionally graded material
    Dai, Y.
    Yan, X. F.
    Sun, C. Q.
    Tan, W.
    [J]. ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008, 2008, : 701 - 704
  • [8] Dynamic crack-tip stress and displacement fields under thermomechanical loading in functionally graded materials
    Lee, Kwang Ho
    Chalivendra, Vijaya Bhaskar
    Shukla, Arun
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2008, 75 (05):
  • [9] TRANSIENT CRACK-TIP FIELDS FOR MIXED-MODE POWER LAW CREEP
    BROCKENBROUGH, JR
    SHIH, CF
    SURESH, S
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 1991, 49 (03) : 177 - 202
  • [10] The Crack-Tip Fields of Reissner's Plates of Radial Functionally Graded Materials
    Dai Yao
    Liu Jun-feng
    Zhang Peng
    [J]. HIGH PERFORMANCE STRUCTURES AND MATERIALS ENGINEERING, PTS 1 AND 2, 2011, 217-218 : 1319 - 1323