The natural partial order on semigroups of transformations with restricted range that preserve an equivalence

被引:0
|
作者
Kritsada Sangkhanan
Jintana Sanwong
机构
[1] Chiang Mai University,Department of Mathematics, Faculty of Science
来源
Semigroup Forum | 2024年 / 108卷
关键词
Transformation semigroup; Equivalence; Partial order; Compatibility; Maximal element; Minimal element;
D O I
暂无
中图分类号
学科分类号
摘要
Let Y be a nonempty subset of X and T(X, Y) the set of all functions from X into Y. Then T(X, Y) with composition is a subsemigroup of the full transformation semigroup T(X). Let E be a nontrivial equivalence on X. Define a subsemigroup TE(X,Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_E(X,Y)$$\end{document} of T(X, Y) by TE(X,Y)={α∈T(X,Y):∀(x,y)∈E,(xα,yα)∈E}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_E(X,Y)=\{\alpha \in T(X,Y):\forall (x,y)\in E, (x\alpha ,y\alpha )\in E\}. \end{aligned}$$\end{document}We study TE(X,Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_E(X,Y)$$\end{document} with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on TE(X,Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_E(X,Y)$$\end{document} and then describe the maximal and minimal elements.
引用
收藏
页码:438 / 456
页数:18
相关论文
共 50 条