Single source unsplittable flows with arc-wise lower and upper bounds

被引:0
|
作者
Sarah Morell
Martin Skutella
机构
[1] Technische Universität Berlin,Combinatorial Optimization & Graph Algorithms Group, Institut für Mathematik
来源
Mathematical Programming | 2022年 / 192卷
关键词
Network flow; Unsplittable flow; Rounding; Flow augmentation; 90C27 Combinatorial Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In a digraph with a source and several destination nodes with associated demands, an unsplittable flow routes each demand along a single path from the common source to its destination. Given some flow x that is not necessarily unsplittable but satisfies all demands, it is a natural question to ask for an unsplittable flow y that does not deviate from x by too much, i.e., ya≈xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_a\approx x_a$$\end{document} for all arcs a. Twenty years ago, in a landmark paper, Dinitz et al. (Combinatorica 19:17–41, 1999) proved that there exists an unsplittable flow y such that ya≤xa+dmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_a\le x_a+d_{\max }$$\end{document} for all arcs a, where dmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\max }$$\end{document} denotes the maximum demand value. Our first contribution is a considerably simpler one-page proof for this classical result, based upon an entirely new approach. Secondly, using a subtle variant of this approach, we obtain a new result: There is an unsplittable flow y such that ya≥xa-dmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_a\ge x_a-d_{\max }$$\end{document} for all arcs a. Finally, building upon an iterative rounding technique previously introduced by Kolliopoulos and Stein (SIAM J Comput 31:919–946, 2002) and Skutella (Math Program 91:493–514, 2002), we prove existence of an unsplittable flow that simultaneously satisfies the upper and lower bounds for the special case when demands are integer multiples of each other. For arbitrary demand values, we prove the weaker simultaneous bounds xa/2-dmax≤ya≤2xa+dmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_a/2-d_{\max }\le y_a\le 2x_a+d_{\max }$$\end{document} for all arcs a.
引用
收藏
页码:477 / 496
页数:19
相关论文
共 28 条
  • [1] Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds
    Morell, Sarah
    Skutella, Martin
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 294 - 306
  • [2] Single source unsplittable flows with arc-wise lower and upper bounds
    Morell, Sarah
    Skutella, Martin
    MATHEMATICAL PROGRAMMING, 2022, 192 (1-2) : 477 - 496
  • [3] On the Consistent Migration of Unsplittable Flows: Upper and Lower Complexity Bounds
    Foerster, Klaus-Tycho
    2017 IEEE 16TH INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2017, : 153 - 156
  • [4] Convex combinations of single source unsplittable flows
    Martens, Maren
    Salazar, Fernanda
    Skutella, Martin
    ALGORITHMS - ESA 2007, PROCEEDINGS, 2007, 4698 : 395 - +
  • [5] Single-Source Unsplittable Flows in Planar Graphs
    Traub, Vera
    Koch, Laura Vargas
    Zenklusen, Rico
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 639 - 668
  • [6] Upper and lower bounds for the single source capacitated location problem
    Cortinhal, MJ
    Captivo, ME
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 151 (02) : 333 - 351
  • [7] Lower and upper bounds for the mixed capacitated arc routing problem
    Belenguer, Jose-Manuel
    Benavent, Enrique
    Lacomme, Philippe
    Prins, Christian
    COMPUTERS & OPERATIONS RESEARCH, 2006, 33 (12) : 3363 - 3383
  • [8] UPPER AND LOWER BOUNDS FOR INELASTIC FLOWS USING BEM AND FEM
    TANNER, RI
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1990, 38 (01) : 101 - 106
  • [9] On lower and upper bounds for single machine parallel batch scheduling
    Evgeny R. Gafarov
    Alexandre Dolgui
    Optimization Letters, 2022, 16 : 2557 - 2567
  • [10] Lower and upper bounds for single-scanner snapshot implementations
    Fatourou, Panagiota
    Kallimanis, Nikolaos D.
    DISTRIBUTED COMPUTING, 2017, 30 (04) : 231 - 260