Dynamic CT perfusion image data compression for efficient parallel processing

被引:0
|
作者
Renan Sales Barros
Silvia Delgado Olabarriaga
Jordi Borst
Marianne A. A. van Walderveen
Jorrit S. Posthuma
Geert J. Streekstra
Marcel van Herk
Charles B. L. M. Majoie
Henk A. Marquering
机构
[1] University of Amsterdam,Biomedical Engineering and Physics, Academic Medical Center
[2] University of Amsterdam,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center
[3] University of Amsterdam,Department of Radiology, Academic Medical Center
[4] Leiden University Medical Center,Department of Radiology
[5] The Netherlands Cancer Institute,Department of Radiation Oncology
关键词
Acute care; CT perfusion; GPU; Lossless compression; Parallel processing;
D O I
暂无
中图分类号
学科分类号
摘要
The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data.
引用
收藏
页码:463 / 473
页数:10
相关论文
共 50 条
  • [1] Dynamic CT perfusion image data compression for efficient parallel processing
    Barros, Renan Sales
    Olabarriaga, Silvia Delgado
    Borst, Jordi
    van Walderveen, Marianne A. A.
    Posthuma, Jorrit S.
    Streekstra, Geert J.
    van Herk, Marcel
    Majoie, Charles B. L. M.
    Marquering, Henk A.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (2-3) : 463 - 473
  • [2] An efficient parallel processing approach to fractal image compression
    Xie, Xiaohong
    Wu, Rongteng
    [J]. OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY, 2010, 7850
  • [3] EFFICIENT PARALLEL PROCESSING OF IMAGE CONTOURS
    CHEN, LT
    DAVIS, LS
    KRUSKAL, CP
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (01) : 69 - 81
  • [4] Exploiting Dynamic Resource Allocation for Efficient Parallel Data Processing in the Cloud
    Warneke, Daniel
    Kao, Odej
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2011, 22 (06) : 985 - 997
  • [5] Parallel processing Plans for digital image compression techniques
    Bevinakoppa, S
    [J]. CIC'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN COMPUTING, 2000, : 279 - 285
  • [6] TRLE - An efficient data compression scheme for image composition of parallel volume rendering systems
    Lin, CF
    Chung, YC
    Yang, DL
    [J]. FIRST INTERNATIONAL SYMPOSIUM ON CYBER WORLDS, PROCEEDINGS, 2002, : 499 - 506
  • [7] Parallel digital signal processing for image sequence compression
    Truong, PHS
    Ho, SCY
    [J]. 1996 IEEE TENCON - DIGITAL SIGNAL PROCESSING APPLICATIONS PROCEEDINGS, VOLS 1 AND 2, 1996, : 716 - 721
  • [8] Parallel image processing with the block data parallel architecture
    Alexander, WE
    Reeves, DS
    Gloster, CS
    [J]. PROCEEDINGS OF THE IEEE, 1996, 84 (07) : 947 - 968
  • [9] Dynamic CT myocardial perfusion without image registration
    Hubbard, Logan
    Malkasian, Shant
    Molloi, Sabee
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Dynamic CT myocardial perfusion without image registration
    Logan Hubbard
    Shant Malkasian
    Sabee Molloi
    [J]. Scientific Reports, 12