Entanglement across separate silicon dies in a modular superconducting qubit device

被引:0
|
作者
Alysson Gold
J. P. Paquette
Anna Stockklauser
Matthew J. Reagor
M. Sohaib Alam
Andrew Bestwick
Nicolas Didier
Ani Nersisyan
Feyza Oruc
Armin Razavi
Ben Scharmann
Eyob A. Sete
Biswajit Sur
Davide Venturelli
Cody James Winkleblack
Filip Wudarski
Mike Harburn
Chad Rigetti
机构
[1] Rigetti Computing,Quantum Artificial Intelligence Laboratory (QuAIL)
[2] NASA Ames Research Center,undefined
[3] USRA Research Institute for Advanced Computer Science (RIACS),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Assembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interconnects between modules. Here we demonstrate a modular solid state architecture with deterministic inter-module coupling between four physically separate, interchangeable superconducting qubit integrated circuits, achieving two-qubit gate fidelities as high as 99.1 ± 0.5% and 98.3 ± 0.3% for iSWAP and CZ entangling gates, respectively. The quality of the inter-module entanglement is further confirmed by a demonstration of Bell-inequality violation for disjoint pairs of entangled qubits across the four separate silicon dies. Having proven out the fundamental building blocks, this work provides the technological foundations for a modular quantum processor: technology which will accelerate near-term experimental efforts and open up new paths to the fault-tolerant era for solid state qubit architectures.
引用
收藏
相关论文
共 50 条
  • [1] Entanglement across separate silicon dies in a modular superconducting qubit device
    Gold, Alysson
    Paquette, J. P.
    Stockklauser, Anna
    Reagor, Matthew J.
    Alam, M. Sohaib
    Bestwick, Andrew
    Didier, Nicolas
    Nersisyan, Ani
    Oruc, Feyza
    Razavi, Armin
    Scharmann, Ben
    Sete, Eyob A.
    Sur, Biswajit
    Venturelli, Davide
    Winkleblack, Cody James
    Wudarski, Filip
    Harburn, Mike
    Rigetti, Chad
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] Whole-Device Entanglement in a 65-Qubit Superconducting Quantum Computer
    Mooney, Gary J.
    White, Gregory A. L.
    Hill, Charles D.
    Hollenberg, Lloyd C. L.
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (10)
  • [3] Entanglement and Mixedness of a Superconducting Qubit Coupled to an Open Superconducting Cavity
    A.-B. A. Mohamed
    H. Eleuch
    [J]. Journal of Russian Laser Research, 2016, 37 : 353 - 360
  • [4] Entanglement and Mixedness of a Superconducting Qubit Coupled to an Open Superconducting Cavity
    Mohamed, A. -B. A.
    Eleuch, H.
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2016, 37 (04) : 353 - 360
  • [5] Superconducting qubit storage and entanglement with nanomechanical resonators
    Cleland, AN
    Geller, MR
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (07) : 070501 - 1
  • [6] Entanglement in a 20-Qubit Superconducting Quantum Computer
    Gary J. Mooney
    Charles D. Hill
    Lloyd C. L. Hollenberg
    [J]. Scientific Reports, 9
  • [7] Entanglement of a cavity field interacting with a superconducting charge qubit
    Abdalla, M. Sebawe
    Obada, A. -S. F.
    Khalil, E. M.
    Mohamed, A. -B. A.
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2013, 2013 (08):
  • [8] Entanglement control in a superconducting qubit system by an electromagnetic field
    Zhang, Y. Q.
    Xu, J. B.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2011, 63 (03): : 483 - 488
  • [9] Entanglement in a 20-Qubit Superconducting Quantum Computer
    Mooney, Gary J.
    Hill, Charles D.
    Hollenberg, Lloyd C. L.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] Entanglement control in a superconducting qubit system by an electromagnetic field
    Y. Q. Zhang
    J. B. Xu
    [J]. The European Physical Journal D, 2011, 63