A new corrector–predictor interior-point method for symmetric cone optimization

被引:0
|
作者
B. Kheirfam
N. Hosseinpour
H. Abedi
机构
[1] Azarbaijan Shahi Madani University,Department of Mathematics
来源
Periodica Mathematica Hungarica | 2022年 / 85卷
关键词
Symmetric cone optimization; Corrector–predictor methods; Euclidean Jordan algebras; Polynomial complexity; 90C05; 90C25; 90C51;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a corrector–predictor interior-point method for symmetric cone optimization based on Euclidean Jordan algebras as a key tool. Indeed, we extend Darvay et al.’s original technique introduced in (Cent Eur J Oper Res 28(3):1123–1140, 2020) for linear optimization to symmetric cone optimization. An algebraic equivalent transformation of the system defining the central path, based on the function ψ(t)=t-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (t)=t-\sqrt{t}$$\end{document}, is used to obtain the search directions. At each iteration, the algorithm takes a damped Nesterov–Todd step in the predictor stage and a full Nesterov–Todd step in the corrector stage. We discuss the global convergence analysis of the proposed algorithm and prove that the complexity bound coincides with the one obtained for linear optimization. Moreover, numerical results show the efficiency of the proposed method.
引用
收藏
页码:312 / 327
页数:15
相关论文
共 50 条
  • [1] A new corrector-predictor interior-point method for symmetric cone optimization
    Kheirfam, B.
    Hosseinpour, N.
    Abedi, H.
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (02) : 312 - 327
  • [2] A wide neighborhood primal-dual predictor-corrector interior-point method for symmetric cone optimization
    M. Sayadi Shahraki
    H. Mansouri
    M. Zangiabadi
    N. Mahdavi-Amiri
    Numerical Algorithms, 2018, 78 : 535 - 552
  • [3] A wide neighborhood primal-dual predictor-corrector interior-point method for symmetric cone optimization
    Shahraki, M. Sayadi
    Mansouri, H.
    Zangiabadi, M.
    Mahdavi-Amiri, N.
    NUMERICAL ALGORITHMS, 2018, 78 (02) : 535 - 552
  • [4] A corrector–predictor interior-point method with new search direction for linear optimization
    Zs. Darvay
    T. Illés
    B. Kheirfam
    P. R. Rigó
    Central European Journal of Operations Research, 2020, 28 : 1123 - 1140
  • [5] A long-step feasible predictor-corrector interior-point algorithm for symmetric cone optimization
    Asadi, S.
    Mansouri, H.
    Darvay, Zs.
    Lesaja, G.
    Zangiabadi, M.
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (02): : 336 - 362
  • [6] A CORRECTOR-PREDICTOR ARC SEARCH INTERIOR-POINT ALGORITHM FOR SYMMETRIC OPTIMIZATION
    Pirhaji, M.
    Zangiabadi, M.
    Mansouri, H.
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (04) : 1269 - 1284
  • [7] A CORRECTOR-PREDICTOR ARC SEARCH INTERIOR-POINT ALGORITHM FOR SYMMETRIC OPTIMIZATION
    M.PIRHAJI
    M.ZANGIABADI
    H.MANSOURI
    Acta Mathematica Scientia, 2018, (04) : 1269 - 1284
  • [8] Corrector-Predictor Interior-Point Method With New Search Direction for Semidefinite Optimization
    B. Kheirfam
    Journal of Scientific Computing, 2023, 95
  • [9] Corrector-Predictor Interior-Point Method With New Search Direction for Semidefinite Optimization
    Kheirfam, B.
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)
  • [10] A corrector-predictor interior-point method with new search direction for linear optimization
    Darvay, Zs.
    Illes, T.
    Kheirfam, B.
    Rigo, P. R.
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2020, 28 (03) : 1123 - 1140