Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects

被引:0
|
作者
Subhajit Das
Debaprasad Das
Hafizur Rahaman
机构
[1] IIEST,School of VLSI Technology
[2] Assam University,Department of Electronics and Communication Engineering, TSSOT
来源
关键词
Multilayer GNR; RF model; MFP; Top-contact GNR; Side-contact GNR; Intercalation doping;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an electro-thermal radio frequency (RF) model and performance analysis for multilayer graphene nanoribbon (MLGNR) interconnects. The number of conduction channels is calculated as a function of temperature and Fermi energy. A comprehensive model is developed to calculate the temperature dependent effective mean free path (MFP) considering different scattering mechanisms. The RF model of doped and undoped metallic top-contact (TC), as well as side-contact (SC) MLGNR interconnects is demonstrated using ABCD parameter based multi-conductor transmission line formalism. The RF performance of arsenic pentafluoride (AsF5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {AsF}_5$$\end{document}), lithium (Li) and ferric chloride (FeCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {FeCl}_3$$\end{document}) intercalation doped TC-MLGNR interconnects is investigated and compared with pristine (undoped) TC and SC-MLGNR interconnects for different temperatures. For the first time, our investigation shows that the electro-thermal RF performance of TC-MLGNR can be improved by intercalation doping. It is found that AsF5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {AsF}_5$$\end{document}, Li and FeCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {FeCl}_3$$\end{document} intercalated top-contact MLGNR can operate up to a few GHz for semi-global interconnects (100μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,\upmu $$\end{document}m) and several MHz for global interconnects (500μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$500\,\upmu $$\end{document}m). Our analysis also proves that the Li intercalated TC-MLGNR shows the best RF performance as compared to conventional copper, pristine, and other type of intercalation doped TC-MLGNR interconnects over the chip operating temperature range from 233 to 378 K. The performance of Li intercalated TC-MLGNR has been found to be improved further by increasing the specularity during fabrication.
引用
收藏
页码:1695 / 1708
页数:13
相关论文
共 50 条
  • [1] Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects
    Das, Subhajit
    Das, Debaprasad
    Rahaman, Hafizur
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2018, 17 (04) : 1695 - 1708
  • [2] Modeling and Performance Analysis of Graphene Nanoribbon Interconnects
    Bhattacharya, Sandip
    Das, Debaprasad
    Rahaman, Hafizur
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2017, 40 (05): : 325 - 329
  • [3] Modeling and Performance Analysis of Graphene Nanoribbon Interconnects
    Sandip Bhattacharya
    Debaprasad Das
    Hafizur Rahaman
    National Academy Science Letters, 2017, 40 : 325 - 329
  • [4] Compact Electro-Thermal Models of Interconnects
    Codecasa, Lorenzo
    2013 19TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC), 2013, : 309 - 314
  • [5] Electro-thermal resistance of GaAs interconnects
    Wartenberg, SA
    Zhao, G
    Liu, QH
    JOURNAL OF ELECTRONIC MATERIALS, 2005, 34 (03) : 294 - 298
  • [6] Electro-thermal resistance of GaAs interconnects
    Scott A. Wartenberg
    Gang Zhao
    Qing H. Liu
    Journal of Electronic Materials, 2005, 34 : 294 - 298
  • [7] Compact electro-thermal models of interconnects
    Codecasa, Lorenzo
    MICROELECTRONICS JOURNAL, 2014, 45 (12) : 1777 - 1785
  • [8] Performance Modeling of Intercalation Doped Graphene-Nanoribbon Interconnects
    Das, Subhajit
    Das, Debaprasad
    Rahaman, Hafizur
    2018 INTERNATIONAL SYMPOSIUM ON DEVICES, CIRCUITS AND SYSTEMS (ISDCS), 2018,
  • [9] MODELING AND ANALYSIS OF ELECTRO-THERMAL MICROACTUATORS
    Lo, Chih-Ching
    Lin, Meng-Ju
    Hwan, Chung-Li
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2009, 32 (03) : 351 - 360
  • [10] Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects
    Mayank Kumar Rai
    Ashoke Kumar Chatterjee
    Sankar Sarkar
    B. K. Kaushik
    Journal of Computational Electronics, 2016, 15 : 358 - 366