Gorenstein theory for n-th differential modules

被引:0
|
作者
Huabo Xu
Shilin Yang
Hailou Yao
机构
[1] Beijing University of Technology,College of Applied Science
来源
关键词
-th differential modules; Gorenstein projective (resp. injective); Gorenstein projective (resp. injective) dimension; 16D40; 16D50; 16D90; 16E45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the definition of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-th differential modules is introduced. It is shown that an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-th differential module (M,δM,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,\delta _{M},n)$$\end{document} is Gorenstein projective (resp. injective) if and only if M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} is Gorenstein projective (resp. injective). It is established that the relations between Gorenstein homological dimensions of an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-th differential module and the ones of its underlying module.
引用
收藏
页码:112 / 124
页数:12
相关论文
共 50 条