Boas-type theorems for Laguerre type operator

被引:0
|
作者
Larbi Rakhimi
Radouan Daher
机构
[1] University Hassan II,Department of Mathematics, Faculty of Sciences Aïn Chock
关键词
Laguerre transform; Generalized translation operator; Lipschitz condition; Boas theorems; 43A62; 42B35; 42A10; 26A16;
D O I
暂无
中图分类号
学科分类号
摘要
Let K=[0,+∞)×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {K}}=[0,+\infty )\times {\mathbb {R}}$$\end{document} the Laguerre Hypergroup. In this paper, an analogous of Boas-type results is established for FL(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_{L}(f)$$\end{document}, the laguerre transform of f, and we give necessary and sufficient conditions in terms of FL(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_{L}(f)$$\end{document}, to ensure that f belongs either to one of the generalized Lipschitz classes Hαk(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {H}}_{\alpha }^{k}({\mathbb {K}})$$\end{document} and hαk(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {h}}_{\alpha }^{k}({\mathbb {K}})$$\end{document} for α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Boas-type theorems for Laguerre type operator
    Rakhimi, Larbi
    Daher, Radouan
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (03)
  • [2] Boas-type theorems for the Bessel transform
    Loualid, El Mehdi
    Elgargati, Abdelghani
    Berkak, El Mehdi
    Daher, Radouan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [3] Boas-type theorems for the Bessel transform
    El Mehdi Loualid
    Abdelghani Elgargati
    El Mehdi Berkak
    Radouan Daher
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [4] Boas-type theorems for the free metaplectic transform
    Gargati A.E.
    Berkak I.
    Loualid E.M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1491 - 1507
  • [5] Boas-type theorems for the second Hankel–Clifford transform
    Mahfoud A.
    El Hamma M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (2) : 273 - 283
  • [6] Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform
    Mannai, Mehrez
    Negzaoui, Selma
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (04): : 295 - 309
  • [7] Boas-type theorems for the q-Bessel Fourier transform
    El Mehdi Berkak
    El Mehdi Loualid
    Radouan Daher
    Analysis and Mathematical Physics, 2021, 11
  • [8] Boas-type theorems for the q-Bessel Fourier transform
    Berkak, El Mehdi
    Loualid, El Mehdi
    Daher, Radouan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [9] Boas-type results for Mellin transform
    Volosivets, S. S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (03) : 165 - 174
  • [10] A BOAS-TYPE THEOREM FOR α-MONOTONE FUNCTIONS
    Dyachenko, M.
    Mukanov, A.
    Nursultanov, E.
    MATHEMATICA SCANDINAVICA, 2017, 120 (01) : 39 - 58