Exponential Inequalities for Positively Associated Random Variables and Applications

被引:0
|
作者
Guodong Xing
Shanchao Yang
Ailin Liu
机构
[1] Hunan University of Science and Engineering,Department of Mathematics
[2] Guangxi Normal University,Department of Mathematics
[3] Hunan University of Science and Engineering,Department of Physics
关键词
Full Article; Publisher Note; Exponential Inequality; Positively Associate; Associate Random;
D O I
暂无
中图分类号
学科分类号
摘要
We establish some exponential inequalities for positively associated random variables without the boundedness assumption. These inequalities improve the corresponding results obtained by Oliveira (2005). By one of the inequalities, we obtain the convergence rate [inline-graphic not available: see fulltext] for the case of geometrically decreasing covariances, which closes to the optimal achievable convergence rate for independent random variables under the Hartman-Wintner law of the iterated logarithm and improves the convergence rate [inline-graphic not available: see fulltext] derived by Oliveira (2005) for the above case.
引用
收藏
相关论文
共 50 条
  • [1] Exponential inequalities for positively associated random variables and applications
    Xing, Guodong
    Yang, Shanchao
    Liu, Ailin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [2] Notes on the exponential inequalities for strictly stationary and positively associated random variables
    Xing, Guodong
    Yang, Shanchao
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 4132 - 4140
  • [3] Exponential probability inequalities for WNOD random variables and their applications
    Aiting Shen
    Mei Yao
    Wenjuan Wang
    Andrei Volodin
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 251 - 268
  • [4] Exponential probability inequalities for WNOD random variables and their applications
    Shen, Aiting
    Yao, Mei
    Wang, Wenjuan
    Volodin, Andrei
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) : 251 - 268
  • [5] On some inequalities for positively and negatively dependent random variables with applications
    Matula, P
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 63 (04): : 511 - 522
  • [6] Some Exponential Inequalities for Positively Associated Random Variables and Rates of Convergence of the Strong Law of Large Numbers
    Xing, Guodong
    Yang, Shanchao
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (01) : 169 - 192
  • [7] Some Exponential Inequalities for Positively Associated Random Variables and Rates of Convergence of the Strong Law of Large Numbers
    Guodong Xing
    Shanchao Yang
    [J]. Journal of Theoretical Probability, 2010, 23 : 169 - 192
  • [8] On the exponential inequalities for strictly stationary and negatively associated random variables
    Xing, Guodong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (10) : 3453 - 3460
  • [9] EXPONENTIAL INEQUALITIES FOR BOUNDED RANDOM VARIABLES
    Huang, Guangyue
    Guo, Xin
    Du, Hongxia
    He, Yi
    Miao, Yu
    [J]. MATHEMATICA SLOVACA, 2015, 65 (06) : 1557 - 1570
  • [10] EXPONENTIAL INEQUALITIES FOR DEPENDENT RANDOM VARIABLES
    邵启满
    [J]. Acta Mathematicae Applicatae Sinica, 1990, (04) : 338 - 350