Correction to: Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data

被引:0
|
作者
Irina Belyaeva
Ben Gabrielson
Yu-Ping Wang
Tony W. Wilson
Vince D. Calhoun
Julia M. Stephen
Tülay Adali
机构
[1] University of Maryland,Department of Computer Science and Electrical Engineering
[2] Baltimore County,Department of Biomedical Engineering
[3] Tulane University,undefined
[4] The Institute for Human Neuroscience,undefined
[5] Boys Town National Research Hospital,undefined
[6] Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS),undefined
[7] The Mind Research Network,undefined
[8] Lovelace Biomedical Research Institute,undefined
来源
Neuroinformatics | 2023年 / 21卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:143 / 143
相关论文
共 50 条
  • [1] Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data
    Irina Belyaeva
    Ben Gabrielson
    Yu-Ping Wang
    Tony W. Wilson
    Vince D. Calhoun
    Julia M. Stephen
    Tülay Adali
    Neuroinformatics, 2023, 21 : 115 - 141
  • [2] Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data (vol 21, pg115, 2023)
    Belyaeva, Irina
    Gabrielson, Ben
    Wang, Yu-Ping
    Wilson, Tony W.
    Calhoun, Vince D.
    Stephen, Julia M.
    Adali, Tulay
    NEUROINFORMATICS, 2023, 21 (01) : 143 - 143
  • [3] Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
    Hu, Guoqiang
    Li, Huanjie
    Zhao, Wei
    Hao, Yuxing
    Bai, Zonglei
    Nickerson, Lisa D.
    Cong, Fengyu
    NEUROIMAGE, 2022, 255
  • [4] A canonical polyadic tensor basis for fast Bayesian estimation of multi-subject brain activation patterns
    Miranda, Michelle F.
    FRONTIERS IN NEUROINFORMATICS, 2024, 18
  • [5] A critique of Tensor Probabilistic Independent Component Analysis: Implications and recommendations for multi-subject fMRI data analysis
    Helwig, Nathaniel E.
    Hong, Sungjin
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 213 (02) : 263 - 273
  • [6] Brain activity detection in single- and multi-subject PET data by Bayesian analysis
    Aljobouri H.K.
    Research on Biomedical Engineering, 2020, 36 (03) : 303 - 309
  • [7] Comparison of Multi-Subject ICA Methods for Analysis of fMRI Data
    Erhardt, Erik Barry
    Rachakonda, Srinivas
    Bedrick, Edward J.
    Allen, Elena A.
    Adali, Tuelay
    Calhoun, Vince D.
    HUMAN BRAIN MAPPING, 2011, 32 (12) : 2075 - 2095
  • [8] Multi-subject Task-related fMRI Data Analysis via Generalized Canonical Correlation Analysis
    Karakasis, Paris A.
    Liavas, Athanasios P.
    Sidiropoulos, Nicholas D.
    Simos, Panagiotis G.
    Papadaki, Efrosyni
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1497 - 1502
  • [9] Multi-subject Resting-State fMRI Data Analysis via Generalized Canonical Correlation Analysis
    Karakasis, Paris A.
    Liavas, Athanasios P.
    Sidiropoulos, Nicholas D.
    Simos, Panagiotis G.
    Papadaki, Efrosyni
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1040 - 1044
  • [10] Longitudinal whole-brain analysis of multi-subject diffusion data in diffuse axonal injury
    Grassi, Daphine Centola
    Zaninotto, Ana Luiza
    Feltrin, Fabricio Stewan
    de Carvalho Macruz, Fabiola Bezerra
    Garcia Otaduy, Maria Concepcion
    Leite, Claudia da Costa
    de Paula Guirado, Vinicius Monteiro
    Paiva, Wellingson Silva
    Andrade, Celi Santos
    ARQUIVOS DE NEURO-PSIQUIATRIA, 2022, 80 (03) : 280 - 288