Exterior Stability of Minkowski Space in Generalized Harmonic Gauge

被引:0
|
作者
Peter Hintz
机构
[1] ETH Zürich,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We give a short proof of the existence of a small piece of null infinity for (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional spacetimes evolving from asymptotically flat initial data as solutions of the Einstein vacuum equations. We introduce a modification of the standard wave coordinate gauge in which all non-physical metric degrees of freedom have strong decay at null infinity. Using a formulation of the gauge-fixed Einstein vacuum equations which implements constraint damping, we establish this strong decay regardless of the validity of the constraint equations. On a technical level, we use notions from geometric singular analysis to give a streamlined proof of semiglobal existence for the relevant quasilinear hyperbolic equation.
引用
收藏
相关论文
共 50 条