Fixed points of conformal compressions of symmetric cones

被引:0
|
作者
Yongdo Lim
机构
[1] Department of Mathematics,
[2] Kyungpook National University,undefined
[3] Taegu 702-701,undefined
[4] Korea (e-mail: ylim@knu.ac.kr),undefined
来源
Mathematische Annalen | 2001年 / 321卷
关键词
Mathematics Subject Classification (1991): 22A15, 32M15, 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $V$\end{document} be a Euclidean Jordan algebra and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega$\end{document} be the associated symmetric cone. In this paper, by the contraction property of conformal compressions of the symmetric cone \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega$\end{document} for the natural Riemannian and Finsler metrics on it, we represent the unique fixed point of a strict conformal compression as a limit of continued fractions on the Euclidean Jordan algebra and as the geometric mean of its images at the origin and the infinity point according to the classical triple and the Ol'shanskii polar decompositions of the compression.
引用
收藏
页码:601 / 613
页数:12
相关论文
共 50 条