Volume Approximations of Strongly Pseudoconvex Domains

被引:0
|
作者
Purvi Gupta
机构
[1] University of Michigan,Department of Mathematics
来源
关键词
Strongly pseudoconvex domains; Fefferman hypersurface measure; Affine surface area measure; Polyhedral approximations; 32T15;
D O I
暂无
中图分类号
学科分类号
摘要
In convex geometry, the Blaschke surface area measure on the boundary of a convex domain can be interpreted in terms of the complexity of approximating polyhedra. This approach is formulated in the holomorphic setting to establish an alternate interpretation of Fefferman’s hypersurface measure on boundaries of strongly pseudoconvex domains in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^2$$\end{document}. In particular, it is shown that Fefferman’s measure can be recovered from the Bergman kernel of the domain.
引用
收藏
页码:1029 / 1064
页数:35
相关论文
共 50 条