Topological Stability and Entropy for Certain Set-valued Maps

被引:0
|
作者
Yu Zhang
Yu Jun Zhu
机构
[1] Xiamen University,School of Mathematical Sciences
关键词
Set-valued map; orbit space; hyperbolic endomorphism; perturbation; shadowing; expan-siveness; topological stability; entropy; 37D20; 37B40; 37C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the dynamics (including shadowing property, expansiveness, topological stability and entropy) of several types of upper semi-continuous set-valued maps are mainly considered from differentiable dynamical systems points of view. It is shown that (1) if f is a hyperbolic endomor-phism then for each ε> 0 there exists a C1-neighborhood U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal U}$$\end{document} of f such that the induced set-valued map Ff,U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{f,{\cal U}}}$$\end{document} has the ε-shadowing property, and moreover, if f is an expanding endomorphism then there exists a C1-neighborhood U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal U}$$\end{document} of f such that the induced set-valued map Ff,U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{f,{\cal U}}}$$\end{document} has the Lipschitz shadowing property; (2) when a set-valued map F is generated by finite expanding endomorphisms, it has the shadowing property, and moreover, if the collection of the generators has no coincidence point then F is expansive and hence is topologically stable; (3) if f is an expanding endomorphism then for each ε> 0 there exists a C1-neighborhood U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal U}$$\end{document} of f such that h(Ff,U,ε)=h(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h({F_{f,{\cal U}}},\varepsilon) = h(f)$$\end{document} (4) when F is generated by finite expanding endomorphisms with no coincidence point, the entropy formula of F is given. Furthermore, the dynamics of the set-valued maps based on discontinuous maps on the interval are also considered.
引用
收藏
页码:962 / 984
页数:22
相关论文
共 50 条
  • [1] Topological Stability and Entropy for Certain Set-valued Maps
    Yu ZHANG
    Yu Jun ZHU
    ActaMathematicaSinica,EnglishSeries, 2024, (04) : 962 - 984
  • [2] Topological Stability and Entropy for Certain Set-valued Maps
    Zhang, Yu
    Zhu, Yu Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (04) : 962 - 984
  • [3] TOPOLOGICAL ENTROPY FOR SET-VALUED MAPS
    Carrasco-Olivera, Dante
    Metzger Alvan, Roger
    Morales Rojas, Carlos Arnoldo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3461 - 3474
  • [4] PERSISTENCE AND CW-TOPOLOGICAL STABILITY FOR SET-VALUED MAPS
    Kumar, Ramesh
    Khan, Abdul gaffar
    Das, Tarun
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (02): : 369 - 380
  • [5] METRIC ENTROPY FOR SET-VALUED MAPS
    Vivas, Kendry J.
    Sirvent, Victor F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6589 - 6604
  • [6] TOPOLOGICAL ENTROPY OF SET-VALUED FUNCTIONS
    Kelly, James P.
    Tennant, Tim
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (01): : 263 - 282
  • [7] Topological entropy for set valued maps
    Lampart, Marek
    Raith, Peter
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1533 - 1537
  • [8] TOPOLOGICAL STABILITY IN SET-VALUED DYNAMICS
    Metzger, Roger
    Morales Rojas, Carlos Arnoldo
    Thieullen, Phillipe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (05): : 1965 - 1975
  • [9] Topological entropy of Markov set-valued functions
    Alvin, Lori
    Kelly, James P.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (02) : 321 - 337
  • [10] A topological degree of set-valued maps of type (S)
    Fulina, Silvia
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2007, 69 (04): : 49 - 56