Formation and application of correlated states in nonstationary systems at low energies of interacting particles

被引:0
|
作者
V. I. Vysotskii
M. V. Vysotskyy
S. V. Adamenko
机构
[1] Shevchenko Kiev National University,
[2] Electrodynamic Laboratory “Proton-21,undefined
[3] ”,undefined
关键词
Correlate State; Coulomb Barrier; Superposition State; Tunneling Probability; Nonstationary System;
D O I
暂无
中图分类号
学科分类号
摘要
We consider prerequisites and investigate some optimal methods for the formation of a correlated coherent state of interacting particles in nonstationary systems. We study the influence of the degree of particle correlation on the probability of their passage through the Coulomb barrier for the realization of nuclear reactions at low energies. For such processes, the tunneling probability and, accordingly, the probability of nuclear reactions can grow by many orders of magnitude (in particular, the barrier transparency increases from Dr = 0 ≈ 10−42 for an uncorrelated state to D|r| = 0.98 ≈ 0.1 at a correlation coefficient |r| ≈ 0.98). The formation of a correlated particle state is considered in detail for different types of monotonic decrease in the frequency of a harmonic oscillator with the particle located in its parabolic field. For the first time, we have considered the peculiarities and investigated the efficiency of the creation of a correlated state under a periodic action on a harmonic oscillator. This method is shown to lead to rapid formation of a strongly correlated particle state that provides an almost complete clearing of the potential barrier even for a narrow range of oscillator frequency variations.
引用
收藏
页码:243 / 252
页数:9
相关论文
共 50 条