Many Empty Triangles have a Common Edge

被引:0
|
作者
Imre Bárány
Jean-François Marckert
Matthias Reitzner
机构
[1] Hungarian Academy of Sciences,Rényi Institute of Mathematics
[2] University College London,Department of Mathematics
[3] CNRS,LaBRI
[4] Université Bordeaux,Institut für Mathematik
[5] Universität Osnabrück,undefined
来源
关键词
Finite point sets in the plane; Empty triangles; Random samples; Primary 52A05; Secondary 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
Given a finite point set X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} in the plane, the degree of a pair {x,y}⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x,y\} \subset X$$\end{document} is the number of empty trianglest=conv{x,y,z},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=\mathrm {conv} \{x,y,z\},$$\end{document} where empty means t∩X={x,y,z}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\cap X=\{x,y,z\}.$$\end{document} Define degX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg X$$\end{document} as the maximal degree of a pair in X.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X.$$\end{document} Our main result is that if X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} is a random sample of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} independent and uniform points from a fixed convex body, then degX≥cn/lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg X \ge cn/\ln n$$\end{document} in expectation.
引用
收藏
页码:244 / 252
页数:8
相关论文
共 50 条
  • [1] Many Empty Triangles have a Common Edge
    Barany, Imre
    Marckert, Jean-Francois
    Reitzner, Matthias
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (01) : 244 - 252
  • [2] Empty monochromatic triangles
    Aichholzer, Oswin
    Fabila-Monroy, Ruy
    Flores-Penaloza, David
    Hackl, Thomas
    Huemer, Clemens
    Urrutia, Jorge
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (09): : 934 - 938
  • [3] The number of triangles is more when they have no common vertex
    Xiao, Chuanqi
    Katona, Gyula O. H.
    [J]. DISCRETE MATHEMATICS, 2021, 344 (05)
  • [4] On Convex Curves Which Have Many Inscribed Triangles of Maximum Area
    Castro, Jesus Jeronimo
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (10): : 967 - 971
  • [5] MANY PSYCHOTHERAPIES AND WHAT THEY HAVE IN COMMON
    EHRENWALD, J
    [J]. BULLETIN OF THE NEW YORK ACADEMY OF MEDICINE, 1977, 53 (10) : 880 - 887
  • [6] No selection lemma for empty triangles
    Fabila-Monroy, R.
    Hidalgo-Toscano, C.
    Perz, D.
    Vogtenhuber, B.
    [J]. ACTA MATHEMATICA HUNGARICA, 2024, 173 (01) : 52 - 73
  • [7] A point in many triangles
    Bukh, B
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [8] Empty Triangles in Complete Topological Graphs
    Andres J. Ruiz-Vargas
    [J]. Discrete & Computational Geometry, 2015, 53 : 703 - 712
  • [9] Empty Triangles in Complete Topological Graphs
    Ruiz-Vargas, Andres J.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 703 - 712
  • [10] Empty triangles in drawings of the complete graph
    Harborth, H
    [J]. DISCRETE MATHEMATICS, 1998, 191 (1-3) : 109 - 111