Let M=(M,<,+,·,…)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {M}}=(M,<,+,\cdot ,\ldots )$$\end{document} be a non-valuational weakly o-minimal expansion of a real closed field (M,<,+,·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(M,<,+,\cdot )$$\end{document}. In this paper, we prove that M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {M}}$$\end{document} has a Cr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^r$$\end{document}-strong cell decomposition property, for each positive integer r, a best analogous result from Tanaka and Kawakami (Far East J Math Sci (FJMS) 25(3):417–431, 2007). We also show that curve selection property holds in non-valuational weakly o-minimal expansions of ordered groups. Finally, we extend the notion of definable compactness suitable for weakly o-minimal structures which was examined for definable sets (Peterzil and Steinhorn in J Lond Math Soc 295:769–786, 1999), and prove that a definable set is definably compact if and only if it is closed and bounded.