Some definable properties of sets in non-valuational weakly o-minimal structures

被引:0
|
作者
Somayyeh Tari
机构
[1] Azarbaijan Shahid Madani University,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
关键词
Weakly o-minimal structure; -strong cell decomposition; Definable compactness; Curve selection; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
Let M=(M,<,+,·,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}=(M,<,+,\cdot ,\ldots )$$\end{document} be a non-valuational weakly o-minimal expansion of a real closed field (M,<,+,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,<,+,\cdot )$$\end{document}. In this paper, we prove that M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} has a Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document}-strong cell decomposition property, for each positive integer r, a best analogous result from Tanaka and Kawakami (Far East J Math Sci (FJMS) 25(3):417–431, 2007). We also show that curve selection property holds in non-valuational weakly o-minimal expansions of ordered groups. Finally, we extend the notion of definable compactness suitable for weakly o-minimal structures which was examined for definable sets (Peterzil and Steinhorn in J Lond Math Soc 295:769–786, 1999), and prove that a definable set is definably compact if and only if it is closed and bounded.
引用
收藏
页码:309 / 317
页数:8
相关论文
共 50 条