Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors

被引:0
|
作者
Santiago Cabrera
Amihay Hanany
Zhenghao Zhong
机构
[1] The Blackett Laboratory,Theoretical Physics
[2] Imperial College London,undefined
关键词
Field Theories in Lower Dimensions; Gauge Symmetry; Supersymmetric Gauge Theory; Brane Dynamics in Gauge Theories;
D O I
暂无
中图分类号
学科分类号
摘要
Coulomb branches of a set of 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra son\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(n) $$\end{document}. From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O(N ) or special orthogonal SO(N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of Tσ(SO(n)∨) theories, utilizing the monopole formula. The results for all nilpotent orbits from so3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(3) $$\end{document} to so10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(10) $$\end{document} which are special and normal are presented. A new relationship between the choice of SO/O(N ) factors in the gauge group and the Lusztig’s Canonical QuotientA¯Oλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{A}\left({\mathcal{O}}_{\lambda}\right) $$\end{document} of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO(N ) gauge group factors by the diagonal action of a ℤ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{Z}}_2 $$\end{document} group.
引用
收藏
相关论文
共 3 条