Field Theories in Lower Dimensions;
Gauge Symmetry;
Supersymmetric Gauge Theory;
Brane Dynamics in Gauge Theories;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Coulomb branches of a set of 3dN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra son\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathfrak{so}(n) $$\end{document}. From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O(N ) or special orthogonal SO(N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of Tσ(SO(n)∨) theories, utilizing the monopole formula. The results for all nilpotent orbits from so3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathfrak{so}(3) $$\end{document} to so10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathfrak{so}(10) $$\end{document} which are special and normal are presented. A new relationship between the choice of SO/O(N ) factors in the gauge group and the Lusztig’s Canonical QuotientA¯Oλ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{A}\left({\mathcal{O}}_{\lambda}\right) $$\end{document} of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO(N ) gauge group factors by the diagonal action of a ℤ2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb{Z}}_2 $$\end{document} group.