Testing for the mean of random curves: A penalization approach

被引:0
|
作者
Mas A. [1 ,2 ]
机构
[1] Depatament de Mathematique, Université Montpellier 2
[2] Laboratoire de Probabilités-Statistiques, CC051, Université Montpellier 2, 34095 Montpellier Cedex 5, Place Eugène Bataillon
关键词
Functional data; Hypothesis testing; Local alternatives; Random curves; Weak convergence;
D O I
10.1007/s11203-005-0754-3
中图分类号
学科分类号
摘要
Let X 1,...,X n be an i.i.d. sample of random curves, viewed as Hilbert space valued random elements, with mean curve m. An asymptotic test of m = m 0 vs m ≠ m 0 is proposed, when m 0 is a fixed known function. The test statistics converges under very mild assumptions and relies on the pseudo-inversion of the covariance operator (leading to a non standard inverse problem). The power against local alternatives is investigated. © Springer 2006.
引用
下载
收藏
页码:147 / 163
页数:16
相关论文
共 50 条
  • [1] A spectral mean for random closed curves
    van Lieshout, M. N. M.
    SPATIAL STATISTICS, 2016, 18 : 72 - 85
  • [2] Aggregating Composite Indicators through the Geometric Mean: A Penalization Approach
    Mariani, Francesca
    Ciommi, Mariateresa
    COMPUTATION, 2022, 10 (04)
  • [3] A penalization approach to random-effects meta-analysis
    Wang, Yipeng
    Lin, Lifeng
    Thompson, Christopher G.
    Chu, Haitao
    STATISTICS IN MEDICINE, 2022, 41 (03) : 500 - 516
  • [4] An introduction to functional data analysis and a principal component approach for testing the equality of mean curves
    Lajos Horváth
    Gregory Rice
    Revista Matemática Complutense, 2015, 28 : 505 - 548
  • [5] Addendum to: An introduction to functional data analysis and a principal component approach for testing the equality of mean curves
    Lajos Horváth
    Gregory Rice
    Revista Matemática Complutense, 2016, 29 : 241 - 244
  • [6] ON WAVELET METHODS FOR TESTING EQUALITY OF MEAN RESPONSE CURVES
    Guo, Pengfei
    Oyet, Alwell Julius
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2009, 7 (03) : 357 - 373
  • [7] Random uncertainty of statistical moments in testing: Mean
    Brouwer, Joris
    Tukker, Jan
    Klinkenberg, Yvette
    van Rijsbergen, Martijn
    OCEAN ENGINEERING, 2019, 182 : 563 - 576
  • [8] Testing for change in mean for associated random variables
    Garg, Mansi
    Dewan, Isha
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (16) : 3834 - 3850
  • [9] HYPOTHESIS TESTING FOR MULTIPLE MEAN AND CORRELATION CURVES WITH FUNCTIONAL DATA
    Yuan, Ao
    Fang, Hong-Bin
    Li, Haiou
    Wu, Colin O.
    Tan, Ming T.
    STATISTICA SINICA, 2020, 30 (02) : 1095 - 1116
  • [10] Testing the equality of mean functions of ionospheric critical frequency curves
    Gromenko, Oleksandr
    Kokoszka, Piotr
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2012, 61 : 715 - 731