Discrete minimum and maximum principles for finite element approximations of non-monotone elliptic equations

被引:0
|
作者
Ansgar Jüngel
Andreas Unterreiter
机构
[1] Universität Mainz,Fachbereich Mathematik und Informatik
[2] Institut für Mathematik,undefined
[3] MA 6-3,undefined
[4] TU Berlin,undefined
来源
Numerische Mathematik | 2005年 / 99卷
关键词
Maximum Principle; Structure Condition; Elliptic Equation; Variational Formulation; Space Dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Uniform lower and upper bounds for positive finite-element approximations to semilinear elliptic equations in several space dimensions subject to mixed Dirichlet-Neumann boundary conditions are derived. The main feature is that the non-linearity may be non-monotone and unbounded. The discrete minimum principle provides a positivity-preserving approximation if the discretization parameter is small enough and if some structure conditions on the non-linearity and the triangulation are assumed. The discrete maximum principle also holds for degenerate diffusion coefficients. The proofs are based on Stampacchia’s truncation technique and on a variational formulation. Both methods are settled on careful estimates on the truncation operator.
引用
收藏
页码:485 / 508
页数:23
相关论文
共 50 条