Influence maximization problem: properties and algorithms

被引:0
|
作者
Wenguo Yang
Yapu Zhang
Ding-Zhu Du
机构
[1] University of Chinese Academy of Sciences,School of Mathematical Sciences
[2] University of Texas at Dallas,Department of Computer Science
来源
关键词
Submodular function; Marginal increment; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The influence maximization problem has become one of the fundamental combinatorial optimization problems over the past decade due to its extensive applications in social networks. Although a 1-1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document} approximation ratio is easily obtained using a greedy algorithm for the submodular case, how to solve the non-submodular case and enhance the solution quality deserve further study. In this paper, based on the marginal increments, we devise a non-negative decomposition property for monotone function and a non-increasing decomposition property for monotone submodular function (NDP). According to the exchange improvement (EI), a necessary condition for an optimal solution is also proposed. With the help of NDP and EI condition, an exchange improvement algorithm is proposed to improve further the quality of the solution to the non-submodular influence maximization problem. For the influence maximization, we devise effective methods to compute the influence spread and marginal gain in a successive iteration update manner. These methods make it possible to calculate the influence spread directly and accurately. Next, we design a data-dependent approximation algorithm for a non-submodular topology change problem from a marginal increment perspective.
引用
收藏
页码:907 / 928
页数:21
相关论文
共 50 条
  • [1] Influence maximization problem: properties and algorithms
    Yang, Wenguo
    Zhang, Yapu
    Du, Ding-Zhu
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 907 - 928
  • [2] A survey on meta-heuristic algorithms for the influence maximization problem in the social networks
    Zahra Aghaee
    Mohammad Mahdi Ghasemi
    Hamid Ahmadi Beni
    Asgarali Bouyer
    Afsaneh Fatemi
    [J]. Computing, 2021, 103 : 2437 - 2477
  • [3] A survey on meta-heuristic algorithms for the influence maximization problem in the social networks
    Aghaee, Zahra
    Ghasemi, Mohammad Mahdi
    Beni, Hamid Ahmadi
    Bouyer, Asgarali
    Fatemi, Afsaneh
    [J]. COMPUTING, 2021, 103 (11) : 2437 - 2477
  • [4] Efficient Algorithms for Adaptive Influence Maximization
    Han, Kai
    Huang, Keke
    Xiao, Xiaokui
    Tang, Jing
    Sun, Aixin
    Tang, Xueyan
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (09): : 1029 - 1040
  • [5] Online Processing Algorithms for Influence Maximization
    Tang, Jing
    Tang, Xueyan
    Xiao, Xiaokui
    Yuan, Junsong
    [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 991 - 1005
  • [6] Efficient approximation algorithms for adaptive influence maximization
    Huang, Keke
    Tang, Jing
    Han, Kai
    Xiao, Xiaokui
    Chen, Wei
    Sun, Aixin
    Tang, Xueyan
    Lim, Andrew
    [J]. VLDB JOURNAL, 2020, 29 (06): : 1385 - 1406
  • [7] A numerical evaluation of the accuracy of influence maximization algorithms
    Kingi, Hautahi
    Wang, Li-An Daniel
    Shafer, Tom
    Minh Huynh
    Trinh, Mike
    Heuser, Aaron
    Rochester, George
    Paredes, Antonio
    [J]. SOCIAL NETWORK ANALYSIS AND MINING, 2020, 10 (01)
  • [8] The generalized influence blocking maximization problem
    Erd, Fernando C.
    Vignatti, Andre L.
    Silva, Murilo V. G. da
    [J]. SOCIAL NETWORK ANALYSIS AND MINING, 2021, 11 (01)
  • [9] A numerical evaluation of the accuracy of influence maximization algorithms
    Hautahi Kingi
    Li-An Daniel Wang
    Tom Shafer
    Minh Huynh
    Mike Trinh
    Aaron Heuser
    George Rochester
    Antonio Paredes
    [J]. Social Network Analysis and Mining, 2020, 10
  • [10] Fast and Scalable Implementations of Influence Maximization Algorithms
    Minutoli, Marco
    Halappanavar, Mahantesh
    Kalyanaraman, Ananth
    Sathanur, Arun
    Mcclure, Ryan
    McDermott, Jason
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2019, : 407 - 418