Greedy Algorithms for Reduced Bases in Banach Spaces

被引:0
|
作者
Ronald DeVore
Guergana Petrova
Przemyslaw Wojtaszczyk
机构
[1] Texas A&M University,Department of Mathematics
[2] University of Warsaw,Institute of Applied Mathematics, and Interdisciplinary Centre for Mathematical and Computational Modelling
来源
关键词
Greedy algorithms; Convergence rates; Reduced basis; General Banach space; 41A46; 41A25; 46B20; 15A15;
D O I
暂无
中图分类号
学科分类号
摘要
Given a Banach space X and one of its compact sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document}, we consider the problem of finding a good n-dimensional space Xn⊂X which can be used to approximate the elements of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document}. The best possible error we can achieve for such an approximation is given by the Kolmogorov width \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{n}(\mathcal{F})_{X}$\end{document}. However, finding the space which gives this performance is typically numerically intractable. Recently, a new greedy strategy for obtaining good spaces was given in the context of the reduced basis method for solving a parametric family of PDEs. The performance of this greedy algorithm was initially analyzed in Buffa et al. (Modél. Math. Anal. Numér. 46:595–603, 2012) in the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=\mathcal{H}$\end{document} is a Hilbert space. The results of Buffa et al. (Modél. Math. Anal. Numér. 46:595–603, 2012) were significantly improved upon in Binev et al. (SIAM J. Math. Anal. 43:1457–1472, 2011). The purpose of the present paper is to give a new analysis of the performance of such greedy algorithms. Our analysis not only gives improved results for the Hilbert space case but can also be applied to the same greedy procedure in general Banach spaces.
引用
收藏
页码:455 / 466
页数:11
相关论文
共 50 条
  • [1] Greedy Algorithms for Reduced Bases in Banach Spaces
    DeVore, Ronald
    Petrova, Guergana
    Wojtaszczyk, Przemyslaw
    [J]. CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 455 - 466
  • [2] Greedy algorithms in Banach spaces
    V.N. Temlyakov
    [J]. Advances in Computational Mathematics, 2001, 14 : 277 - 292
  • [3] Greedy algorithms in Banach spaces
    Temlyakov, VN
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 14 (03) : 277 - 292
  • [4] Characterization of greedy bases in Banach spaces
    Berna, Pablo M.
    Blasco, Oscar
    [J]. JOURNAL OF APPROXIMATION THEORY, 2017, 215 : 28 - 39
  • [5] Convergence of Greedy Algorithms in Banach Spaces
    E. D. Livshits
    [J]. Mathematical Notes, 2003, 73 : 342 - 358
  • [6] Convergence of greedy algorithms in Banach spaces
    Livshits, ED
    [J]. MATHEMATICAL NOTES, 2003, 73 (3-4) : 342 - 358
  • [7] On the existence of almost greedy bases in Banach spaces
    Dilworth, SJ
    Kalton, NJ
    Kutzarova, D
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 67 - 101
  • [8] A Functional Characterization of Almost Greedy and Partially Greedy Bases in Banach Spaces
    Manuel Berna, Pablo
    Mondejar, Diego
    [J]. MATHEMATICS, 2021, 9 (15)
  • [9] Convergence of some greedy algorithms in Banach spaces
    Dilworth, SJ
    Kutzarova, D
    Temlyakov, VN
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2002, 8 (05) : 489 - 505
  • [10] Weak Convergence of Greedy Algorithms in Banach Spaces
    Dilworth, S. J.
    Kutzarova, Denka
    Shuman, Karen L.
    Temlyakov, V. N.
    Wojtaszczyk, P.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) : 609 - 628