A Summation Formula for Macdonald Polynomials

被引:0
|
作者
Jan de Gier
Michael Wheeler
机构
[1] The University of Melbourne,School of Mathematics and Statistics
来源
关键词
Macdonald polynomials; Primary 05E05; 33D80;
D O I
暂无
中图分类号
学科分类号
摘要
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t = 1}$$\end{document} and q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q = 0}$$\end{document}, we recover known expressions for the monomial symmetric and Hall–Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q–Whittaker polynomials.
引用
收藏
页码:381 / 394
页数:13
相关论文
共 50 条