Riemann problem in the weighted spaces L1(ρ)

被引:0
|
作者
H. M. Hayrapetyan
V. G. Petrosyan
机构
[1] Yerevan State University,
关键词
Riemann problem; weighted space; Cauchy type integral; factorization; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
In the unit disc bounded by the circle T = {z, |z| = 1} we consider the Riemann boundary value problem in the weighted space L1(ρ), where ρ(t)=∏k=1m|t−tk|αk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \left( t \right) = {\prod\nolimits_{k = 1}^m {\left| {t - {t_k}} \right|} ^{{\alpha _k}}}$$\end{document}, tk ∈ T, k = 1, 2,..., m, and αk, k = 1, 2,..., m are real numbers. The question of interest is to determine an analytic outside the circle T function ϕ(z), ϕ(∞) = 0 to satisfy limr→1−0||Φ+(rt)−a(t)Φ−(r−1t)−f(t)||L1(ρr)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lim _{r \to 1 - 0}}||{\Phi ^ + }\left( {rt} \right) - a\left( t \right){\Phi ^ - }\left( {{r^{ - 1}}t} \right) - f\left( t \right)|{|_{{L^1}\left( {{\rho _r}} \right)}} = 0$$\end{document}, where f ∈ L1(ρ), a(t) ∈ Cδ(T), δ>0, and ρr are some continuations of function ρ inside the circle. The normal solvability of this problem is established.
引用
收藏
页码:249 / 261
页数:12
相关论文
共 50 条
  • [1] Riemann problem in the weighted spaces L 1(ρ)
    Hayrapetyan, H. M.
    Petrosyan, V. G.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (05): : 249 - 261
  • [2] Hilbert boundary value problem in the weighted spaces L1(ρ)
    H. M. Hayrapetyan
    M. S. Hayrapetyan
    [J]. Journal of Contemporary Mathematical Analysis, 2008, 43 : 85 - 99
  • [3] Hilbert Boundary Value Problem in the Weighted Spaces L1(ρ)
    Hayrapetyan, H. M.
    Hayrapetyan, M. S.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (02): : 85 - 99
  • [4] The Cesaro operator in weighted l1 spaces
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (07) : 1015 - 1048
  • [5] The Bergman projection on weighted spaces:: L1 and Herz spaces
    Blasco, O
    Pérez-Esteva, S
    [J]. STUDIA MATHEMATICA, 2002, 150 (02) : 151 - 162
  • [6] Discrete fragmentation systems in weighted l1 spaces
    Kerr, Lyndsay
    Lamb, Wilson
    Langer, Matthias
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1419 - 1451
  • [7] Infinite matrices bounded on weighted l1 spaces
    Williams, Joseph J.
    Ye, Qiang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (12) : 4689 - 4700
  • [8] SPECTRAL ANALYSIS IN WEIGHTED L1 SPACES ON R
    VRETBLAD, A
    [J]. ARKIV FOR MATEMATIK, 1973, 11 (01): : 109 - 138
  • [9] On weighted Ostrowski type inequalities in L1(a, b) spaces
    Rafiq, Arif
    Ahmad, Farooq
    [J]. MATHEMATICAL COMMUNICATIONS, 2009, 14 (01) : 27 - 33
  • [10] Uniqueness for degenerate parabolic equations in weighted L1 spaces
    Nobili, Camilla
    Punzo, Fabio
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (02)