Approximate Invariance and Differential Inclusions in Hilbert Spaces

被引:0
|
作者
F. H. Clarke
Yu. S. Ledyaev
M. L. Radulescu
机构
[1] Université de Montréal,Centre de recherches mathématiques
[2] Steklov Institute of Mathematics,Department of Mathematics
[3] The University of British Columbia,undefined
关键词
Differential inclusion; approximate weak and strong invariance; viability; ∈-trajectory; lower and upper Hamiltonians; proximal normal cone; proximal aiming;
D O I
10.1023/A:1021873607769
中图分类号
学科分类号
摘要
Consider a mapping F from a Hilbert space H to the subsets of H, which is upper semicontinuous/Lipschitz, has nonconvex, noncompact values, and satisfies a linear growth condition. We give the first necessary and sufficient conditions in this general setting for a subset S of H to be approximately weakly/strongly invariant with respect to approximate solutions of the differential inclusion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x(t) \in F(x)$$ \end{document} The conditions are given in terms of the lower/upper Hamiltonians corresponding to F and involve nonsmooth analysis elements and techniques. The concept of approximate invariance generalizes the well-known concept of invariance and in turn relies on the notion of an ∈-trajectory corresponding to a differential inclusion.
引用
收藏
页码:493 / 518
页数:25
相关论文
共 50 条