Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate

被引:0
|
作者
Guoqing Geng
Rupert J. Myers
Mohammad Javad Abdolhosseini Qomi
Paulo J. M. Monteiro
机构
[1] University of California,Department of Civil and Environmental Engineering
[2] Yale University,School of Forestry & Environmental Studies
[3] University of California,Department of Civil and Environmental Engineering
[4] Lawrence Berkeley National Laboratory,Material Science Division
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is ‘defect-driven’, i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the ‘defect-driven’ hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.
引用
收藏
相关论文
共 50 条
  • [1] Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate
    Geng, Guoqing
    Myers, Rupert J.
    Qomi, Mohammad Javad Abdolhosseini
    Monteiro, Paulo J. M.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [2] Effect of Biomolecules on the Nanostructure and Nanomechanical Property of Calcium-Silicate-Hydrate
    Mahsa Kamali
    Ali Ghahremaninezhad
    [J]. Scientific Reports, 8
  • [3] Order and disorder in calcium-silicate-hydrate
    Bauchy, M.
    Qomi, M. J. Abdolhosseini
    Ulm, F. -J.
    Pellenq, R. J. -M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (21):
  • [4] The multi-scale mechanical properties of calcium-silicate-hydrate
    Wang, Jiawei
    Gao, Chang
    Tang, Jinhui
    Hu, Zhangli
    Liu, Jiaping
    [J]. CEMENT & CONCRETE COMPOSITES, 2023, 140
  • [5] Structure and micro-nanomechanical characterization of synthetic calcium-silicate-hydrate with Poly(Vinyl Alcohol)
    Pelisser, F.
    Gleize, P. J. P.
    Mikowski, A.
    [J]. CEMENT & CONCRETE COMPOSITES, 2014, 48 : 1 - 8
  • [6] Discrete element modeling of calcium-silicate-hydrate
    Chandler, Mei Qiang
    Peters, John F.
    Pelessone, Daniele
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (05)
  • [7] Nanolayered attributes of calcium-silicate-hydrate gels
    Masoumi, Saeed
    Ebrahimi, Davoud
    Valipour, Hamid
    Qomi, Mohammad Javad Abdolhosseini
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (01) : 541 - 557
  • [8] Hydration of tricalcium silicate in the presence of synthetic calcium-silicate-hydrate
    Alizadeh, Rouhollah
    Raki, Laila
    Makar, Jon M.
    Beaudoin, James J.
    Moudrakovski, Igor
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (42) : 7937 - 7946
  • [9] Effects of MgSO4 on Calcium-Silicate-Hydrate
    Jativa, Francisco W.
    Hosseini, Payam
    Gabr, Mohammed
    Pour-Ghaz, M.
    [J]. ADVANCES IN CIVIL ENGINEERING MATERIALS, 2021, 10 (01): : 440 - 452
  • [10] A method for calculating the carbonation degree of calcium-silicate-hydrate
    Shen, Qizhen
    Pan, Ganghua
    Bao, Bingfeng
    [J]. ADVANCES IN CEMENT RESEARCH, 2018, 30 (09) : 427 - 436