Combining information from linkage and association mapping for next-generation sequencing longitudinal family data

被引:2
|
作者
Brunilda Balliu
Hae-Won Uh
Roula Tsonaka
Stefan Boehringer
Quinta Helmer
Jeanine J Houwing-Duistermaat
机构
[1] Leiden University Medical Center,Department of Medical Statistics and Bioinformatics
[2] Leiden University Medical Center,Netherlands Consortium for Healthy Ageing
关键词
Linkage Disequilibrium; Rare Variant; Association Mapping; Whole Genome Sequence; Impute Genotype;
D O I
10.1186/1753-6561-8-S1-S34
中图分类号
学科分类号
摘要
In this analysis, we investigate the contributions that linkage-based methods, such as identical-by-descent mapping, can make to association mapping to identify rare variants in next-generation sequencing data. First, we identify regions in which cases share more segments identical-by-descent around a putative causal variant than do controls. Second, we use a two-stage mixed-effect model approach to summarize the single-nucleotide polymorphism data within each region and include them as covariates in the model for the phenotype. We assess the impact of linkage disequilibrium in determining identical-by-descent states between individuals by using markers with and without linkage disequilibrium for the first part and the impact of imputation in testing for association by using imputed genome-wide association studies or raw sequence markers for the second part. We apply the method to next-generation sequencing longitudinal family data from Genetic Association Workshop 18 and identify a significant region at chromosome 3: 40249244-41025167 (p-value = 2.3 × 10−3).
引用
收藏
相关论文
共 50 条
  • [1] Estimation of allele frequency and association mapping using next-generation sequencing data
    Kim, Su Yeon
    Lohmueller, Kirk E.
    Albrechtsen, Anders
    Li, Yingrui
    Korneliussen, Thorfinn
    Tian, Geng
    Grarup, Niels
    Jiang, Tao
    Andersen, Gitte
    Witte, Daniel
    Jorgensen, Torben
    Hansen, Torben
    Pedersen, Oluf
    Wang, Jun
    Nielsen, Rasmus
    BMC BIOINFORMATICS, 2011, 12
  • [2] Estimation of allele frequency and association mapping using next-generation sequencing data
    Su Yeon Kim
    Kirk E Lohmueller
    Anders Albrechtsen
    Yingrui Li
    Thorfinn Korneliussen
    Geng Tian
    Niels Grarup
    Tao Jiang
    Gitte Andersen
    Daniel Witte
    Torben Jorgensen
    Torben Hansen
    Oluf Pedersen
    Jun Wang
    Rasmus Nielsen
    BMC Bioinformatics, 12
  • [3] Family-Based Association Studies for Next-Generation Sequencing
    Zhu, Yun
    Xiong, Momiao
    AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (06) : 1028 - 1045
  • [4] Compressive mapping for next-generation sequencing
    Deniz Yorukoglu
    Yun William Yu
    Jian Peng
    Bonnie Berger
    Nature Biotechnology, 2016, 34 : 374 - 376
  • [5] Compressive mapping for next-generation sequencing
    Yorukoglu, Deniz
    Yu, Yun William
    Peng, Jian
    Berger, Bonnie
    NATURE BIOTECHNOLOGY, 2016, 34 (04) : 374 - 376
  • [6] Linkage Analysis in the Next-Generation Sequencing Era
    Bailey-Wilson, Joan E.
    Wilson, Alexander F.
    HUMAN HEREDITY, 2011, 72 (04) : 228 - 236
  • [7] MEASURING LINKAGE DISEQUILIBRIUM WITH NEXT-GENERATION SEQUENCING HLA TYPING DATA
    Cano, Pedro
    HUMAN IMMUNOLOGY, 2016, 77 : 80 - 80
  • [8] NGSNGS: next-generation simulator for next-generation sequencing data
    Henriksen, Rasmus Amund
    Zhao, Lei
    Korneliussen, Thorfinn Sand
    BIOINFORMATICS, 2023, 39 (01)
  • [9] Association studies for next-generation sequencing
    Luo, Li
    Boerwinkle, Eric
    Xiong, Momiao
    GENOME RESEARCH, 2011, 21 (07) : 1099 - 1108
  • [10] The Collapsed Haplotype Pattern Method for Linkage Analysis of Next-Generation Sequencing Data
    Leal, S. M.
    Wang, G. T.
    Zhang, D.
    Li, B.
    Dai, H.
    HUMAN HEREDITY, 2015, 79 (01) : 41 - 41