Sign-changing blowing-up solutions for a non-homogeneous elliptic equation at the critical exponent

被引:0
|
作者
Monica Musso
机构
[1] Pontificia Universidad Catolica de Chile,Departamento de Matemática
关键词
Sobolev exponent; Entire solutions; Sign-changing solutions; 35J15; 35J08; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the equation -Δu=|u|4n-2u+εf(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u = |u| ^{\frac{4}{n-2}}u + \varepsilon f(x) $$\end{document} under zero Dirichlet boundary conditions in a bounded domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n}$$\end{document}, n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 3$$\end{document}, with f≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\ge 0$$\end{document}, f≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\ne 0$$\end{document}. We find sign-changing solutions with large energy. The basic cell in the construction is the sign-changing nodal solution to the critical Yamabe problem -Δw=|w|4n-2w,w∈D1,2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta w = |w|^{\frac{4}{n-2}} w, \quad w \in {\mathcal D}^{1,2} (\mathbb {R}^n) \end{aligned}$$\end{document}recently constructed in del Pino et al. (J Differ Equ 251(9):2568–2597, 2011).
引用
收藏
页码:345 / 361
页数:16
相关论文
共 50 条