The analytic approach in quantum chromodynamics

被引:0
|
作者
I. L. Solovtsov
D. V. Shirkov
机构
[1] Joint Institute for Nuclear Research,Bogoliubov Laboratory of Theoretical Physics
来源
关键词
Operator Product Expansion; Renormalization Scheme; Analytic Perturbation Theory; Renormalization Prescription; Invariant Charge;
D O I
暂无
中图分类号
学科分类号
摘要
In a new “renormalization invariant analytic formulation” of calculations in quantum chromodynamics, the renormalization group summation is correlated with the analyticity with respect to the square of the transferred momentum Q2. The expressions for the invariant charge and matrix elements are then modified such that the nonphysical singularities of the ghost pole type do not appear at all: additional nonperturbative contributions compensate them by construction. With the new scheme, the calculation results for several physical processes are stable with respect to higher-loop effects and the choice of the renormalization prescription. Having applications of the new formulation to inelastic lepton-nucleon scattering processes in mind, we analyze the corresponding structure functions starting from general principles of the theory in the Jost-Lehmann-Dyson integral representation. A nonstandard scaling variable leads to modified moments of the structure functions possessing Källén-Lehmann analytic properties with respect to Q2. We find the relation between these “modified analytic moments” and the operator product expansion.
引用
收藏
页码:1220 / 1244
页数:24
相关论文
共 50 条
  • [1] The analytic approach to quantum chromodynamics
    Shirkov, DV
    Solovtsov, IL
    PHYSICS OF PARTICLES AND NUCLEI, 2001, 32 : S48 - S51
  • [2] The analytic approach in quantum chromodynamics
    Solovtsov, IL
    Shirkov, DV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 120 (03) : 1220 - 1244
  • [3] Quasipotential approach to quantum chromodynamics
    Hieu N.V.
    Theoretical and Mathematical Physics, 2002, 132 (2) : 1144 - 1147
  • [4] Quasipotential approach to quantum chromodynamics
    Van Hieu, N
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 132 (02) : 1144 - 1147
  • [5] NONPERTURBATIVE APPROACH TO QUANTUM CHROMODYNAMICS
    PAGELS, H
    PHYSICAL REVIEW D, 1977, 15 (10): : 2991 - 3002
  • [6] ALGEBRAIC APPROACH IN QUANTUM CHROMODYNAMICS AND ELECTROWEAK THEORY
    ONEDA, S
    TERASAKI, K
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1985, (82): : 1 - 164
  • [7] UNIFIED APPROACH TO JET PROCESSES IN QUANTUM CHROMODYNAMICS
    KAZAMA, Y
    YAO, YP
    PHYSICAL REVIEW LETTERS, 1978, 41 (09) : 611 - 614
  • [8] SPECIAL PROPERTIES OF THE VACUUM POLARIZATION ANALYTIC-FUNCTION IN QUANTUM CHROMODYNAMICS
    VERZEGNASSI, C
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1981, 64 (03): : 269 - 284
  • [9] QUANTUM CHROMODYNAMICS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    Chinese Physics C, 2014, 38 (09) : 122 - 138
  • [10] QUANTUM CHROMODYNAMICS
    MARCIANO, W
    PAGELS, H
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1978, 36 (03): : 137 - 276