Simple Maps, Hurwitz Numbers, and Topological Recursion

被引:0
|
作者
Gaëtan Borot
Elba Garcia-Failde
机构
[1] Max Planck Institut für Mathematik,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorics of fully simple maps with topology of a disk or a cylinder. We show that the generating series of simple disks is given by the functional inversion of the generating series of ordinary disks. We also obtain an elegant formula for cylinders. These relations reproduce the relation between moments and (higher order) free cumulants established by Collins et al. [22], and implement the symplectic transformation x↔y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \leftrightarrow y$$\end{document} on the spectral curve in the context of topological recursion. We conjecture that the generating series of fully simple maps are computed by the topological recursion after exchange of x and y. We propose an argument to prove this statement conditionally to a mild version of the symplectic invariance for the 1-hermitian matrix model, which is believed to be true but has not been proved yet. Our conjecture can be considered as a combinatorial interpretation of the property of symplectic invariance of the topological recursion. Our argument relies on an (unconditional) matrix model interpretation of fully simple maps, via the formal hermitian matrix model with external field. We also deduce a universal relation between generating series of fully simple maps and of ordinary maps, which involves double monotone Hurwitz numbers. In particular, (ordinary) maps without internal faces—which are generated by the Gaussian Unitary Ensemble—and with boundary perimeters (λ1,…,λn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda _1,\ldots ,\lambda _n)$$\end{document} are strictly monotone double Hurwitz numbers with ramifications λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} above ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} and (2,…,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,\ldots ,2)$$\end{document} above 0. Combining with a recent result of Dubrovin et al. [24], this implies an ELSV-like formula for these Hurwitz numbers.
引用
收藏
页码:581 / 654
页数:73
相关论文
共 50 条
  • [1] Simple Maps, Hurwitz Numbers, and Topological Recursion
    Borot, Gaetan
    Garcia-Failde, Elba
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 380 (02) : 581 - 654
  • [2] A matrix model for simple Hurwitz numbers, and topological recursion
    Borot, Gaetan
    Eynard, Bertrand
    Mulase, Motohico
    Safnuk, Brad
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) : 522 - 540
  • [3] Weighted Hurwitz Numbers and Topological Recursion
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (01) : 237 - 305
  • [4] Weighted Hurwitz Numbers and Topological Recursion
    A. Alexandrov
    G. Chapuy
    B. Eynard
    J. Harnad
    Communications in Mathematical Physics, 2020, 375 : 237 - 305
  • [5] Weighted Hurwitz numbers and topological recursion: An overview
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [6] Towards the topological recursion for double Hurwitz numbers
    Do, Norman
    Karev, Maksim
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 151 - 178
  • [7] Topological recursion and a quantum curve for monotone Hurwitz numbers
    Do, Norman
    Dyer, Alastair
    Mathews, Daniel V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 19 - 36
  • [8] Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 360 (02) : 777 - 826
  • [9] Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
    A. Alexandrov
    G. Chapuy
    B. Eynard
    J. Harnad
    Communications in Mathematical Physics, 2018, 360 : 777 - 826
  • [10] Double Hurwitz numbers: polynomiality, topological recursion and intersection theory
    Gaëtan Borot
    Norman Do
    Maksim Karev
    Danilo Lewański
    Ellena Moskovsky
    Mathematische Annalen, 2023, 387 : 179 - 243