On Local Properties of Singular Integrals

被引:0
|
作者
J. I. Mamedkhanov
S. Z. Jafarov
机构
[1] Baku State University,Institute of Mathematics and Mechanics
[2] Muş Alparslan University,undefined
[3] National Academy of Sciences of Azerbaijan,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let γ be a regular curve. We study the local properties of singular integrals in the class of functions Hαα+βt0,γ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{\alpha }^{\alpha +\beta }\left({t}_{0},\upgamma \right).$$\end{document} We obtain a strengthening of the Plemelj–Privalov theorem for functions from the class Hαα+βt0,γ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{\alpha }^{\alpha +\beta }\left({t}_{0},\upgamma \right).$$\end{document} It is proved that, at the point t0 of increased smoothness for α+β < 1, there is only a logarithmic loss.
引用
收藏
页码:703 / 718
页数:15
相关论文
共 50 条
  • [1] On Local Properties of Singular Integrals
    Mamedkhanov, J. I.
    Jafarov, S. Z.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (5) : 703 - 718
  • [2] SINGULAR INTEGRALS FOR LOCAL FIELDS
    PHILLIPS, KL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A138 - A138
  • [3] On local properties of functions and singular integrals in terms of the mean oscillation
    Rzaev, Rahim M.
    Aliyeva, Lala R.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2008, 6 (04): : 595 - 609
  • [4] CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS
    Campos, Federico
    Salinas, Oscar
    Viviani, Beatriz
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 153 - 175
  • [5] Local Fractional and singular integrals on open subsets
    Eleonor Harboure
    Oscar Salinas
    Beatriz Viviani
    Journal d'Analyse Mathématique, 2019, 138 : 301 - 324
  • [6] CLASSIFICATION OF SINGULAR INTEGRALS OVER A LOCAL FIELD
    DOWNEY, C
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 59 (02) : 417 - 426
  • [7] LOCAL FIELD SINGULAR INTEGRALS WITH COMPLEX HOMOGENEITY
    DALY, JE
    MATHEMATISCHE ANNALEN, 1975, 218 (02) : 117 - 126
  • [8] LOCAL FRACTIONAL AND SINGULAR INTEGRALS ON OPEN SUBSETS
    Harboure, Eleonor
    Salinas, Oscar
    Viviani, Beatriz
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 138 (01): : 301 - 324
  • [9] ON SOME PROPERTIES OF A CLASS OF SINGULAR INTEGRALS
    SADOSKY, C
    STUDIA MATHEMATICA, 1966, 27 (01) : 73 - &
  • [10] SOME PROPERTIES OF A CLASS OF SINGULAR INTEGRALS
    BORZYMOWSKI, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (01): : 35 - 39